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ABSTRACT 

This thesis implements spectrum sensing and localization tasks using a radio 

frequency sensor network and analyzes the performance of this implementation through 

simulation.  A sensor network based cooperative wideband spectrum sensing and 

localization scheme is proposed for the implementation of the tasks.  In the proposed 

scheme, wavelet-based multi-resolution spectrum sensing and received signal strength-

based localization methods, which were originally proposed for cognitive radio 

applications, are adapted to radio frequency sensor networks.  For cooperation of the 

nodes in the proposed scheme, a new three-bit hard combination technique is developed.  

A simulation model is created in MATLAB programming language to implement the 

proposed scheme and to analyze its simulation performance.  The results of the 

simulation show that the proposed sensor network based cooperative wideband spectrum 

sensing and localization scheme is appropriate for radio frequency sensor networks and 

the proposed three-bit hard combination scheme is superior to the traditional hard 

combination schemes in terms of false alarm reduction. 
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EXECUTIVE SUMMARY 

Spectrum sensing and localization are two important tasks in electronic warfare, 

signal intelligence and cognitive radios.  In electronic warfare and signal intelligence, 

these tasks can be implemented using a radio frequency sensor network to detect the 

signals in the air, determine their frequencies, and estimate the locations and effective 

isotropic radiated powers (EIRPs) of the radio frequency sources emitting the signals of 

interest.  In cognitive radios, unlicensed users implement spectrum sensing and 

localization not to interfere with licensed users.  Cooperation in spectrum sensing and 

localization improves the signal detection and position estimation performance under 

fading, shadowing or noisy conditions. 

The objective of this thesis is to implement collaborative spectrum sensing and 

localization using a radio frequency sensor network.  In particular, the aim is to determine 

the frequencies of the signals in the air, and estimate the locations and EIRPs of the 

sources emitting these signals through collaborations of the sensor nodes.  An additional 

objective is to minimize the computational complexity and maximize the sensing and 

localization performance.  To achieve these objectives, a sensor network based 

cooperative wideband spectrum sensing and localization scheme is proposed.  This 

scheme uses a wavelet-based multi-resolution spectrum sensing (MRSS) method for 

spectrum sensing, a new three-bit hard combination technique for collaboration, and a 

received signal strength (RSS)-based localization method for location and EIRP 

estimation.  MRSS and RSS-based localization methods, which were originally proposed 

for cognitive radio applications in the literature, are adapted to RF sensor networks in this 

thesis. 

A simulation model was developed in MATLAB programming language to 

implement the proposed scheme and to analyze its simulation performance.  In the 

performance analysis of the cooperative wideband spectrum sensing part of the proposed 

scheme, the effects of different window types, number of power spectral densities (PSDs) 

averaged, number of nodes, signal-to-noise-ratio (SNR) values, and number of 



 xiv

transmitters on the detection performance were simulated.  Performance of a new three-

bit hard combination scheme was compared with traditional hard combination schemes.  

Different values of the number of samples, number of nodes, and standard deviation of 

the Gaussian variable in the shadowing model were simulated to determine their effects 

on the performance of the localization part of the proposed scheme. 

The results of the simulations showed that the proposed sensor network based 

cooperative wideband spectrum sensing and localization scheme is appropriate for radio 

frequency sensor networks.  Redundant, exhaustive sensing on empty bands is avoided 

with MRSS, and less overhead in collaboration with respect to the soft combination is 

provided by three-bit hard combination.  RSS-based localization scheme not only 

estimates the location of the signal of interest sources, but also their EIRP.  Cooperation 

of the nodes provides resilience to fading, shadowing, and noise.  

Another result of the simulation is that the proposed three-bit hard combination 

scheme is superior to the traditional hard combination schemes in false alarm reduction, 

and the detection performance of the three-bit combination scheme can be improved with 

little additional cost by increasing the number of averaged PSDs. 

The simulation results also showed that for the localization part of the proposed 

scheme, average absolute power estimation error presents the same behavior as the 

position estimation mean squared error.  In particular, the number of samples, number of 

nodes, and standard deviation of the Gaussian variable in the shadowing model affect 

both error metrics in a similar manner.  
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I. INTRODUCTION  

Wireless sensor networks, consisting of a large number of randomly deployed, 

low-cost, low-power, multifunctional nodes collaborating to achieve a common goal, are 

used in a variety of applications including military [1].  By being equipped with 

appropriate sensors, these networks can detect, identify and analyze sensor signal data to 

monitor enemy activity [2].  In particular, a wireless network consisting of radio 

frequency (RF) sensor nodes can be used to implement electronic warfare (EW) tasks, 

such as spectrum sensing and localization.  

A wireless sensor network consisting of RF sensor nodes that are deployed within 

an area of interest can be used to detect the signals in the air, to determine their 

frequencies, and to estimate the locations and effective isotropic radiated powers (EIRPs) 

of the RF sources emitting these signals.  Figure 1 depicts a scenario for this purpose.  

The collaboration among the sensor nodes not only improves the detection performance 

and estimation accuracy but also increases the life of the sensor nodes by decreasing the 

detection time required [3].   

Spectrum sensing and localization are also implemented in cognitive radios, 

which can be defined as smart radios having the ability to be aware of the 

electromagnetic environment.  Secondary users, also called unlicensed users, implement 

spectrum sensing and sometimes localization to use the licensed spectrum bands without 

interfering with the primary users having priority of service [3].  In particular, secondary 

users utilize spectrum sensing to find unoccupied frequency bands where communication 

is possible.  As in RF sensor networks, cooperation in spectrum sensing and localization 

improves the performance of cognitive radio networks. 

Due to the two important application areas briefly mentioned above, namely EW 

and cognitive radio, spectrum sensing and localization are active research topics.  Many 

researchers work on spectrum sensing and localization methods to improve the efficiency 

and performance of these methods. 
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Figure 1.   A Scenario of Using a RF Sensor Network to Determine the Frequency 
Bands, Locations and EIRPs of the Source Transmitters. 

A. THESIS OBJECTIVE 

The objective of this thesis is to implement collaborative spectrum sensing and 

localization of RF sources using a sensor network as an EW task.  Figure 1 shows the EW 

scenario adopted in this thesis.  The purpose of the RF sensor network is to determine the 

frequencies of the RF sources and to estimate the location and EIRP of these transmitters.  

An additional objective is to minimize the computations needed for spectrum sensing and 

source localization, while maximizing the signal detection performance and accuracy of 

the estimations of the transmitters’ location and EIRP.  When the limited battery energy 

of each node is taken into consideration, the importance of this objective is easily 

understood. 

A sensor network based cooperative wideband spectrum sensing and localization 

scheme is proposed in this thesis to achieve these objectives.  This proposed scheme uses 
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a wavelet-based multi-resolution spectrum sensing (MRSS) method [4] for spectrum 

sensing, a new three-bit hard combination technique for collaboration, and received 

signal strength (RSS)-based localization method [5] for localization.  MRSS and RSS-

based localization methods were originally proposed for cognitive radio applications in 

the literature and are adapted to RF sensor networks in this thesis. 

A simulation model will be developed in MATLAB programming language to 

implement the proposed scheme and to analyze its simulation performance. 

B. RELATED WORK 

Spectrum sensing and cooperation in spectrum sensing are currently two of the 

most active research topics in wireless communications.  This popularity is due to 

emerging cognitive radio applications.  Much of the spectrum sensing work in the 

literature has been concerned with cooperative spectrum sensing in cognitive radios.  Hur 

et al. [4] studied wavelet-based MRSS for cognitive radios.  Ma et al. [6] proposed a two-

bit hard combination and detection scheme for spectrum sensing in cognitive radio 

networks. 

Much has been written in the literature on emitter localization.  Kim et al [5] 

studied RSS-based localization to find the position and EIRP of the primary users in 

cognitive radios. 

This thesis will use the MRSS scheme from [4] for the spectrum sensing task and 

use ideas from [6] as a starting point for the proposed three-bit hard combination scheme.  

The source localization scheme used in the thesis is based on the work reported in [5]. 

C. THESIS OUTLINE 

The organization of this thesis is as follows.  Chapter II covers the spectrum 

sensing methods, localization algorithms, and application areas of spectrum sensing and 

localization.  Chapter III describes the proposed sensor network based cooperative 

wideband spectrum sensing and localization scheme and presents the fundamental 

techniques used in the scheme.  In particular, the MRSS, cooperative spectrum sensing, 
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proposed three-bit hard combination scheme, and RSS-based localization scheme are 

discussed.  Chapter IV describes the simulation model and presents the simulation results.  

Chapter V summarizes the thesis work, and highlights future work for further 

investigation.  The Appendix presents selected MATLAB code developed as part of this 

work. 
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II. BACKGROUND 

As mentioned in Chapter I, spectrum sensing and localization are two important 

functions used in electronic warfare (EW) and cognitive radio applications.  This chapter 

presents background on spectrum sensing and source localization.  Firstly, three 

important spectrum sensing methods are discussed; then localization algorithms are 

briefly mentioned.  Application areas of spectrum sensing and localization, namely 

electronic warfare and cognitive radio, are also described.  

A. SPECTRUM SENSING METHODS 

Spectrum sensing can be defined as examining the radio spectrum to determine 

the used or unused frequency bands.  In EW applications, it is used to find the occupied 

frequency bands in the spectrum, whereas in cognitive radio, it is applied to detect the 

unoccupied frequency bands to communicate.   

This section discusses the three most common spectrum sensing methods reported 

in the literature. 

1. Energy Detector-based Sensing 

Energy detector-based sensing is one of the most common sensing methods [7].   

It uses the energy of the received signal to decide on the presence of the signal.  Figure 2 

shows an implementation of this method.  As seen in this figure, the received signal of 

interest is filtered, converted to a digital form, squared and integrated over the 

observation interval to obtain the signal energy [8].  This energy is compared with a 

threshold to decide on the presence of the signal of interest [8].   

Energy detector-based sensing, also known as radiometry, is the optimal spectrum 

sensing method, when the information about the signal of interest is not known [8].  It is 

easy to implement and has low computational complexity [7].   

Since the received energy is compared to a threshold in energy detector-based 

sensing, the threshold selection affects the performance of the method significantly.  This 
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method is also susceptible to uncertainty in the noise power [8].  At low signal-to-noise 

ratio (SNR) values, from 10 dB  to 40 dB , this detector requires more detection time 

compared to the matched filtering method detector [8] presented in Chapter II.A.3. 

In this thesis, multi-resolution spectrum sensing, an improved energy detector 

based sensing method [9], is used. 

 

Figure 2.   An Implementation of Energy Detector-based Sensing (After [10]). 

2. Cyclostationary-based Sensing 

In the cyclostationary-based sensing method, cyclostationary features of the 

modulated signals are exploited.  Cyclostationary features are the inherent results of the 

periodic structures of the modulated signals, such as sinusoidal carriers, pulse trains, 

hopping sequences, or cyclic prefixes [8].  Due to this built-in periodicity, modulated 

signals are cyclostationary with spectral correlation [8].   

Figure 3 shows an implementation of the cyclostationary-based sensing method.  

As seen in this figure, first the spectral components of the input signal are computed 

through the fast Fourier transform (FFT) [10].  Then the spectral correlation is performed 

on these spectral components and the spectral correlation function is estimated [10].  This 

spectral correlation function is analyzed to detect the signals in the cyclostationary-based 

spectrum sensing method [8].     
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The biggest advantage of this method is that it is robust to uncertainty in noise 

power [8].  This robustness comes from the fact that the noise is a wide-sense stationary 

process with no spectral correlation, whereas the modulated signals are cyclostationary 

with spectral correlation [8].   

On the other hand, cyclostationary-based sensing has increased computational 

complexity and requires longer observation time than the energy detector-based sensing 

schemes [8].   

 

Figure 3.   An Implementation of Cyclostationary-based Sensing (After [10]). 

3. Matched Filtering 

Matched filtering is a spectrum sensing method that uses a priori knowledge of 

the characteristics of the received signal [8].  This a priori knowledge may include 

modulation type and order, pulse shaping, packet format, bandwidth, frequency, etc. [7, 

10].  Figure 4 shows an implementation of the matched filtering method.  In this figure, 

“pilot” is a priori knowledge of the signal of interest.  The pilot is correlated to the 

received signal and then compared to a threshold for detection.  In the matched filtering 

method, the receiver has to achieve coherency with the input signal by using timing and 

carrier synchronization [10].   

Matched filtering is the optimal spectrum sensing method when the information 

about the signal of interest is known [7].  To achieve a certain probability of false alarm, 

this method requires shorter time as compared to the energy detector-based sensing and 

cyclostationary-based sensing methods [7].   
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The need for a priori knowledge is the main disadvantage of the matched filtering 

method [7].  The requirement of synchronization between the transmitter and the receiver 

is another disadvantage of this method [8].  Moreover, if a variety of signal types must be 

received, complexity of this implementation is high [7].   

 

Figure 4.   An Implementation of the Matched Filtering Method (After [10]). 

B. LOCALIZATION SCHEMES 

The localization operation is used to determine the position of the source of the 

signal of interest.  In an EW application, it is used to determine the location of an 

adversary’s transmitter, whereas in a cognitive radio, it is used to determine the location 

of a primary user.  Localization schemes can be classified into two categories, namely, 

range-based localization schemes and range-free localization schemes [11].  This section 

discusses these two categories. 
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1. Range-based Localization Schemes 

Range-based localization schemes exploit ranging to estimate the location of the 

source.  Range-based localization schemes use different metrics, such as time of arrival 

(TOA), time difference of arrival (TDOA), angle of arrival (AOA), or received signal 

strength (RSS) metrics.   

TOA is found by measuring the time at which a radio frequency (RF) signal first 

arrives at a receiver [12].  The measured TOA is equal to the transmission time plus time 

delay due to propagation [12].  The distance information is found from the propagation 

delay between a source and a receiver [13]. 

In TDOA-based schemes, the difference of the TOAs in different receivers is used 

to estimate the location of a source [13].  This estimation can either use the difference in 

the times at which a single signal from the source arrives at three or more nodes, or the 

difference in the times at which multiple signals from the source arrive at one receiver 

[13].  Hence, in TDOA based schemes, highly precise synchronization between the 

receivers is required, but precise synchronization between source and receivers is not 

required [13]. 

In range-based localization schemes, based on an AOA metric, the distance 

between receivers is formed using the angle between them [13].  Adoption of antenna 

arrays and a minimum distance between the antenna elements are required in this scheme 

[13].  Another disadvantage is that this scheme is highly sensitive to multipath, non-line-

of-sight conditions, and array precision [13].   

RSS is the squared magnitude of the signal amplitude that  is the measured power 

[12].  It is measured by a receiver’s received signal strength indicator circuit [12].  In 

RSS-based localization schemes, the distance is measured based on the attenuation due to 

the propagation of the signal from source to receiver [13].  This localization scheme 

requires an accurate propagation model to estimate the distance reliably, since the 

channel affects the relation between distance and attenuation [13].  Since RSS 

measurements are relatively inexpensive and easy to implement, this scheme has low cost 

[12].  Some of the RSS-based localization schemes require knowledge of the effective 
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isotropic radiated power (EIRP) of the transmitter [5].  An example of an algorithm using 

the RSS metric without knowledge of EIRP of transmitter is given in [5].   

2. Range-free Localization Schemes 

Range-free localization schemes are used to find the node positions in wireless 

networks.  Anchor nodes, with known coordinates, are deployed across the wireless 

network and sensor positions are found from the estimated distance to multiple anchors 

and their coordinates [14].  In particular, the information of anchor nodes or the 

connectivity of the wireless network is exploited to estimate the position of the 

transmitter [11].  Each anchor may have a Global Positioning System (GPS) receiver to 

find its position [15].  Since the nodes do not need extra hardware for providing range 

information, range-free localization schemes are more cost effective than range-based 

localization schemes [14]. 

C. APPLICATION AREAS OF SPECTRUM SENSING AND 
LOCALIZATION 

EW, which has been an important topic since the 1960s, is an inseparable part of 

today’s military operations and uses spectrum sensing and localization extensively.  

Cognitive radio, an emerging communication technology, first proposed in 1999, exploits 

spectrum sensing and localization for its operation.  This section describes cognitive 

radio and EW concepts in addition to signals intelligence (SIGINT). 

1. Cognitive Radio 

Cognitive radio is an emerging technology [16] in which one of the intents is to 

use the frequency spectrum efficiently. 

A cognitive radio is a smart radio that knows where it is, what services are 

available, what services interest the user, and how to find these interested services [17].  

It also knows the current and future, communication and computing needs of its user 

[17].  One of its objectives is to find and use the empty spectral band to communicate 

more efficiently [17]. 
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The definition of the cognitive radio according to the Software Defined Radio 

(SDR) Forum is given as [18] 

a) Radio in which communication systems are aware of their environment 
and internal state and can make decisions about their radio operating 
behavior based on that information and predefined objectives. The 
environmental information may or may not include location information 
related to communication systems.  

b) Cognitive Radio (as defined in a) that utilizes Software Defined Radio, 
Adaptive Radio, and other technologies to automatically adjust its 
behavior or operations to achieve desired objectives.  

 

A cognitive radio is aware of its physical, operational and electromagnetic 

environments [19].  Position in space, proximity to various networks, and knowledge of 

the weather conditions are examples of the physical environment aspects of which a 

cognitive radio can be aware [19].  Awareness in the operational environments may 

include a user’s usage pattern and operating preferences [19].  Signals in the air form the 

local radio spectrum, which means electromagnetic environment.  The ability of a 

cognitive radio in becoming aware of signals in the local spectrum is called spectrum 

sensing in cognitive radio [19].   

In a cognitive radio system, users having the priority to use the spectrum are 

called primary users, whereas the users that use the unoccupied bands not used by 

primary users are called secondary users.  Secondary users apply spectrum sensing to find 

these unoccupied radio frequency bands that can be used for communication.  Therefore, 

spectrum sensing is one of the key functions of a cognitive radio system’s operation.   

Location information related to communication systems is also considered in the 

above definition of cognitive radio given by the SDR Forum.  Location information of 

the primary users can be useful for transmission between secondary users [20].  

Localization can be used to track the primary users or to assist the transmission between 

secondary users [20].  For example, secondary users can be allocated at a distance where 

they detect the presence of a primary signal well outside the primary user’s transmission 

coverage [3]. 
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In summary, it can be said that efficient implementation of spectrum sensing and 

localization is essential for cognitive radio operation. 

2. Electronic Warfare and Signal Intelligence 

The objective of electronic warfare (EW) is to command the electromagnetic 

spectrum with electronic attack (EA), electronic protection (EP), and electronic warfare 

support (ES) actions [21].  ES, formerly known as electronic support measures (ESM), 

supplies the intelligence and threat recognition that allow the implementation of EA and 

EP [21].  ES involves the act of intercepting, identifying, analyzing and locating an 

enemy’s radiations [21].  Thus spectrum sensing and localization are two important 

actions in ES.  Finding the frequency of the enemy signal and location of the enemy 

transmitter assists the EA and EP actions. 

Collecting, analyzing, identifying and locating the emitter signals of the enemy 

are also used for SIGINT.  SIGINT has two components: communications intelligence 

(COMINT) and electronic intelligence (ELINT).  COMINT is used against enemy 

communication signals, whereas ELINT is used against enemy noncommunication 

signals, such as radar signals [21].  Both COMINT and ELINT use spectrum sensing and 

localization to gather intelligence about the enemy communication transmitters or radars. 

It can be concluded that spectrum sensing, which can be used to identify the 

frequency of the enemy signal, and localization, which can be used to locate the enemy 

transmitters, are the core actions in EW and SIGINT.  

D. SUMMARY 

In this chapter, the most common spectrum sensing methods and localization 

algorithms were briefly discussed.  Application areas of spectrum sensing and 

localization were also mentioned.  The next chapter will discuss the proposed sensor 

network based cooperative wideband spectrum sensing and localization scheme and the 

fundamental concepts used in this scheme. 
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III. COOPERATIVE WIDEBAND SPECTRUM SENSING AND 
LOCALIZATION SCHEME USING RADIO FREQUENCY SENSOR 

NETWORKS 

As mentioned in Chapter I, a radio frequency (RF) sensor network can be used to 

detect the signals in the air, to determine their spectral bands, and to estimate the 

locations and effective isotropic radiated powers (EIRPs) of the transmitters emitting 

these signals.  It was also mentioned that minimizing the computational load in this 

network while maximizing the detection performance and estimation accuracy is also 

desirable.  

This chapter presents the proposed sensor network based cooperative wideband 

spectrum sensing and localization scheme to achieve the above objectives.  Fundamental 

concepts used in this scheme are also described.  In particular, multi-resolution spectrum 

sensing, cooperation in spectrum sensing, a new three-bit hard combination scheme and a 

received signal strength based localization technique are discussed.  

A. PROPOSED SENSOR NETWORK BASED COOPERATIVE WIDEBAND 
SPECTRUM SENSING AND LOCALIZATION SCHEME  

Figure 5 shows a functional block diagram of the sensor network based 

cooperative wideband spectrum sensing and localization scheme proposed in this thesis.  

The function of each block is as follows.  All nodes in the RF sensor network apply 

coarse resolution sensing to obtain a quick examination of the spectrum of interest.  

Three-bit hard combination combines the coarse resolution sensing results to detect the 

signals in the air and to determine the frequency bands that need to be exhaustively 

inspected.  Fine resolution sensing is applied to these frequency bands to narrow down 

the spectral bands of the signals in the air.  Specific techniques used for received signal 

strength (RSS) measurement at the nodes and the calculation of the relative node 

positions are not presented in this thesis and assumed to be made available.  The function 

of the localization block is to estimate the position and EIRP of the transmitters emitting 

these signals, given the RSS and relative node position values. 
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Figure 5.   Functional Block Diagram of the Proposed Sensor Network Based 
Cooperative Wideband Spectrum Sensing and Localization Scheme. 

This proposed sensor network based cooperative wideband spectrum sensing and 

localization scheme uses a wavelet-based multi-resolution spectrum sensing (MRSS) 

technique [4] in the coarse and fine resolution sensing blocks, a proposed three-bit hard 

combination scheme in the three-bit hard combination block, and a RSS-based 

localization technique [5] in the localization block.  A discussion of the scheme’s 

algorithm follows. 

Firstly, a node designated as the decision maker applies coarse resolution 

spectrum sensing to the entire bandwidth of interest and determines seven thresholds, 

which are used to divide the observation range into eight regions, as explained in Chapter 

III.C.3.  All other nodes are informed of these threshold values so that every node is able 

to apply the same thresholds.  Then, all nodes, except for the decision maker node, apply 

coarse resolution spectrum sensing to the entire bandwidth of interest.  After applying the 

thresholds, the nodes evaluate those frequency bands in which sensed energy exceeds the 

first threshold and determine the region of the sensed energy.  Then, nodes send 

information about the observed energy regions as three-bit values to the decision maker.  

The decision maker determines the spectrum bands on which fine resolution spectrum 

sensing will be applied by using the proposed three-bit hard combination scheme.  The 

decision maker also decides which nodes will apply fine resolution spectrum sensing on 
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the determined spectrum bands.  In particular, nodes that sense the highest energies on 

the determined spectrum bands apply fine resolution sensing.  After fine resolution 

sensing is applied at each selected node, each of the nodes applies the maximum of the 

seven threshold values that is below the maximum observed energy sensed by coarse 

resolution sensing in the determined spectrum band.  In this way, selected nodes 

determine the frequency bands of the signals in the air.   

For finding the locations of the transmitters, the decision maker uses the averaged 

RSS values from the nodes and the positions of the nodes, and then applies the RSS-

based localization scheme explained in Chapter III.D.  

The following sections provide a detailed explanation of the techniques used in 

the proposed sensor network based cooperative wideband spectrum sensing and 

localization scheme.  

B. MULTI-RESOLUTION SPECTRUM SENSING  

MRSS is a kind of energy detector [9].   The basis for MRSS is the sensing of a 

spectrum at two different resolutions: coarse resolution and fine resolution.  In MRSS 

techniques, coarse resolution spectrum sensing is applied to the entire bandwidth of the 

system [22].  This provides a quick examination of the spectrum of interest.  Then, fine 

resolution sensing is performed on the spectral bands in which further inspection is 

necessary [22].  With this method, the entire bandwidth of the system is not examined 

exhaustively; therefore, sensing time and power consumption are reduced significantly 

[22].  

In the literature only a few applications of the MRSS technique [4], [22], [23] are 

documented.  These techniques are classified as either wavelet-based or fast Fourier 

transform (FFT)-based approaches.  

The following subsections discuss both of these approaches.  The wavelet-based 

MRSS technique is explained in greater detail since it is used in the proposed sensor 

network based cooperative wideband spectrum sensing and localization scheme.  The 

FFT-based MRSS technique is presented for completeness.  
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1.  Wavelet-based MRSS  

Figure 6 shows the functional block diagram of a wideband analog wavelet-based 

MRSS technique proposed in [4].  In this wavelet-based MRSS technique, the pulse 

duration of the wavelet generator and frequencies of the sinusoidal functions are changed 

to sense the spectrum with different resolutions [4].  In particular, to obtain different 

sensing resolutions, wavelet pulse width gT  and frequency increment sweepf  are adjusted 

[9], and to scan the frequency band of interest, inspected frequency value kf  is changed.  

The use of a large gT  or a smaller sweepf  provides fine resolution sensing, whereas the use 

of a smaller gT  or a large sweepf  provides coarse resolution sensing.  As shown in Figure 

6, first, a wavelet pulse with duration gT  is multiplied by a cosine and sine functions 

having the same frequency as the inspected frequency.  Then, the results of these 

multiplications are multiplied by the received RF signal.  After that, integration and 

digitization are applied in the analog correlators.  The outputs of the analog correlators 

are first squared and then summed.  The square root of this sum gives the spectral density 

at kf  [4].  The detailed explanation of this operation follows. 

 

Figure 6.   Functional Block Diagram of Wavelet-based MRSS (From [24]). 
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In Figure 6, , ( )I kg t and , ( )Q kg t are given by [4]  

, ( ) ( ) cos(2 ) for 0,...,I k kg t g t f t k K   

, ( ) ( )sin(2 ) for 0,...,Q k kg t g t f t k K   

where ( )g t  is a wavelet pulse, start sweep( )kf f kf  is the k th inspected frequency value 

and stop start sweepRound[( ) / ]K f f f  is the number of inspected frequency values.  

The frequency interval ( )stop startf f is examined by changing kf by the amount of 

sweepf  [4].  The spectral contents , ( )I kz t  and , ( )Q kz t  of input signal ( )r t  are calculated by 

analog correlators for every kf , which are equal to [4] 
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The magnitude kP  represents the spectral density at frequency kf  and is given by 

[4] 

2 2
, ,( ) ( )k I k g Q k gP z kT z kT   

where  , ( )I k gz kT  and , ( )Q k gz kT  are the discrete values of , ( )I kz t  and , ( )Q kz t , which are 

obtained by sampling at every wavelet pulse width gT . 

 Averaging is considered to improve the spectral density estimation performance 

of this technique [4].  In particular, kP  is calculated more than once and the results are 

averaged. Averaging reduces the noise floor level and makes the signals’ spectra more 

discernable [4].   

 Coarse resolution sensing and fine resolution sensing concepts can be better 

understood by an examination of the results of this technique presented in [4].  Figure 7 

shows the spectrum of an input RF signal to the system shown in Figure 6.  In Figure 7, 
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there are three signals in the medium having carrier frequencies: 597 MHz, 615 MHz and 

633 MHz, with bandwidths: 200 kHz, 6 MHz and 7 MHz, respectively.  

 

Figure 7.   Spectrum of an Input RF Signal for the System Shown in Figure 6 (From [4]). 

 Figure 8 shows the result of coarse resolution spectrum sensing with a window 

pulse width gT  of 0.1 μs and a frequency increment sweepf  of 5 MHz.  Figure 9 shows the 

result of fine resolution spectrum sensing with a window pulse width gT  of 1 μs and a 

frequency increment sweepf  of 2 MHz.  Window pulse width gT  and frequency increment 

sweepf  determine the resolution of this scheme.  Note that the lower the sweepf  value and 

the higher the gT  value, the higher the sensing resolution.  By comparing Figure 8 and 

Figure 9, sharp peaks for each input signal in Figure 9 show that fine resolution sensing 

gives better detection performance in terms of sensing resolution [4]. 

 

Figure 8.   Coarse Resolution Sensing Result with 0.1μsgT  , 5MHzsweepf  (From [4]). 
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Figure 9.   Fine Resolution Sensing Result with 1μsgT  , 2 MHzsweepf  (From [4]). 

 One of the advantages of this technique is that a wavelet pulse acts as a bandpass 

filter and rejects the noise in the input RF signal [4].  Since the resolution is adjusted by 

changing the wavelet pulse width gT  and the frequency increment sweepf , a filter bank or 

tunable filter is not needed [25].  Moreover, since most of the computation is done in the 

analog domain, digital circuit complexity can be significantly reduced [25] and low-

power and real-time operations are realizable [4]. 

2. FFT-based MRSS 

In FFT-based MRSS techniques, the size of the FFT that produces the spectrum is 

changed to implement coarse and fine resolution sensing.  For coarse resolution sensing, 

a small size FFT is used, and for fine resolution sensing a larger size FFT is used.  Two 

implementations of FFT-based MRSS techniques are proposed in [23] and [22]. 

Figure 10 and Figure 11 show the block diagrams of the coarse and fine resolution 

modes of the MRSS technique for an MAnt - antenna receiver as proposed in [23].  As can 

be seen from these block diagrams, a larger size FFT is used for fine resolution sensing.  

Since parallel sensing is applied in addition to MRSS, more than one antenna is used in 

this technique.  Parallel sensing provides a reduced total sensing time [23].   

As seen in Figure 10, for coarse resolution sensing, a multitone frequency 

generator generates different center frequencies that will be sensed.  Down-converted 
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frequency bands are digitized and fed into /FFT AntN M  point FFT blocks [23].  Then, the 

outputs of the FFT blocks are used by the sensing block to determine the energies in the 

respective frequency bands [23].  After this process, the medium access control block 

requests the multitone frequency generator to generate another set of center frequencies, 

and sensing is repeated until the whole bandwidth of interest has been scanned [23].   

 

Figure 10.   Block Diagram of the Coarse Resolution Sensing Mode (From [23]). 
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Figure 11.   Block Diagram of the Fine Resolution Sensing Mode (From [23]). 

As depicted in Figure 11, in fine resolution sensing, signals having the same 

frequency value, as determined by the single tone frequency generator, are down-

converted, digitized and input to a FFTN  point FFT.  Then, the output of the FFT block is 

used to determine the energy content of the single band. 

Figure 12 shows the block diagram of the FFT-based MRSS technique proposed 

in [22].  The chip area and power consumption are increased with multiple antenna 

architectures [22]; therefore, a single antenna receiver is used in this technique.  In this 

method, the whole bandwidth of interest is digitized and input to the FFT-based sensing 

block [22].  The energy of each FFT is compared to a threshold and sensing is 

accomplished [22].  The medium access control block reconfigures the FFT-based 

sensing block and sensing is repeated. 
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Figure 12.   Block Diagram of the FFT-based MRSS Method (From [22]). 

 The result of the multi-resolution spectrum sensing scheme applied individually 

by each node can be combined to achieve improved spectrum sensing.  The next section 

explains the collaboration of the sensor nodes in spectrum sensing. 

C. COOPERATIVE SPECTRUM SENSING 

Under fading or shadowing, received signal strength can be very low and this can 

prevent a node from sensing the signal of interest.  Noise can also be a challenge when 

energy detection is used for spectrum sensing, although there are spectrum sensing 

techniques that are robust in the presence of noise, such as feature detection approaches 

[26].  Due to a low signal-to-noise ratio (SNR) value, the signal of interest may not be 

detected.  

The idea of cooperative spectrum sensing in a RF sensor network is the 

collaboration of nodes on deciding the spectrum band used by the transmitters emitting 

the signal of interest.  Nodes send either their test statistics or local decisions about the 

presence of the signal of interest to a decision maker, which can be another node.  

Through this cooperation, the unwanted effects of fading, shadowing and noise can be 

minimized [26].  This is because a signal that is not detected by one node may be 

detected by another.  Figure 13 illustrates the cooperation of nodes in the detection of a 

signal of interest under shadowing and fading conditions. As the number of collaborating 

nodes increases, the probability of missed detection for all nodes decreases [27].  
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Figure 13.   Cooperation of Nodes to Detect the Signal of Interest under Fading and 
Shadowing Conditions (After [8]). 

Cooperation in spectrum sensing also improves the overall detection sensitivity of 

a RF sensor network without the requirement for individual nodes to have high detection 

sensitivity [26].  Less sensitive detectors on nodes means reduced hardware and 

complexity [26]. 

The trade-off for cooperation is more communication overhead [26].  Since the 

local sensing results of nodes should be collected at a decision maker, where the decision 

is made, a control channel is required between the decision maker and the other nodes 

[26].  

There are two forms of cooperation in spectrum sensing: hard combination and 

soft combination.  These two cooperation forms are also known as decision fusion and 

data fusion, respectively.   The difference between these two forms is the type of 

information sent to the decision maker.  

The following subsections first introduce hard combination and soft combination 

schemes, which form the basis of the proposed three-bit hard combination scheme.  Then, 

the three-bit hard combination scheme is explained in greater detail. 
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1. Hard Combination 

In the hard combination scheme, local decisions of the nodes are sent to the 

decision maker.  The algorithm for this scheme is as follows [27].  Every node first 

performs local spectrum sensing and makes a binary decision on whether a signal of 

interest is present or not by comparing the sensed energy with a threshold.  All nodes 

send their one-bit decision result to the decision maker.  Then, a final decision on the 

presence of the signal of interest is made by the decision maker.  

Three of the rules used by the decision maker for a final decision are now 

discussed. 

a. Logical-OR Rule 

 In this rule, if any one of the local decisions sent to the decision maker is a 

logical one (i.e., any one of the nodes decides that the signal of interest is present), the 

final decision made by the decision maker is one (i.e., decision maker decides that the 

signal of interest is present) [28]. 

b. Logical-AND Rule  

 In this rule, if all of the local decisions sent to the decision maker are one 

(i.e., all of the nodes decide that the signal of interest is present), the final decision made 

by the decision maker is one (i.e., decision maker decides that the signal of interest is 

present) [28]. 

c. Majority Rule   

 In this rule, if half or more of the local decisions sent to the decision 

maker are one (i.e., half or more of the nodes decide that the signal of interest is present), 

the final decision made by the decision maker is one (i.e., decision maker decides that the 

signal of interest is present) [28]. 
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The performance analysis, in terms of the probability of detection and the 

probability of false alarm, for these decision rules can be found in the literature [28] and 

is not discussed here. 

The major advantage of the hard combination scheme is that it requires 

only one bit of overhead [6].  Additionally, it only requires a low-bandwidth channel by 

which the decisions are sent [27].  But, since this low-bandwidth channel is also affected 

by fading and shadowing, a local sensing decision of binary one, showing the presence of 

a signal of interest, may be received as a binary zero, showing the absence of the signal 

[27].  This behavior degrades the detection performance [6]. 

2.  Soft Combination 

In the soft combination scheme, nodes send their sensing information directly to 

the decision maker without making any decisions [6].  The decision is made at the 

decision maker by the use of this information [6].  Soft combination provides better 

performance than hard combination, but it requires a wider bandwidth for the control 

channel [29].  It also requires more overhead than the hard combination scheme [6].  

Two implementations of cooperative spectrum sensing schemes that use soft 

combination are given in [6] and [30].  In these schemes, the binary hypothesis test 

statistics of the nodes are sent to the decision maker and a global decision criterion is 

formed at the decision maker with the help of these local test statistics.  The following 

development is a summary of the soft combination scheme proposed in [6]. 

In this scheme, the i th sample of the received signal of interest at the j th node is 

given by [6] 
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where 1 j M  , M is the number of nodes, 1 i R  , R  is the number of samples, 

,av j jiP a  is the received signal of interest, ,av jP  is the average power of this received 

signal, jia  is a Gaussian random variable with zero mean and unit variance, jin  is white 
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noise, 0H  is the “Signal of interest does not exist” hypothesis, and 1H  is the “Signal of 

interest exists” hypothesis.  After some assumptions, a test statistic, which is the observed 

energy at the j th node, is obtained as [6] 
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where 0jb and 1jb  are central chi-square distributed random variables with R  degrees of 

freedom.  All nodes send their test statistics, given by Equation 1, to the decision maker.  

By applying Neyman-Pearson criterion, the global decision criterion is given by [6] 
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where 1 2Y ( , ,..., )MY Y Y and  is the threshold calculated from the given probability of 

false alarm. 

Combination schemes are still an active research area.  Two-bit hard combination 

was recently proposed [6] and can be thought of as a hybrid combination scheme.  The 

following subsection explains this scheme. 

a. Two-bit Hard Combination Scheme 

The two-bit hard combination scheme [6] has the advantage of lower 

overhead, as demonstrated in hard combination approaches and greater performance gain, 

as demonstrated in soft combination approaches.  It is also called softened two-bit hard 

combination [6].  The use of only one threshold in a hard combination scheme causes all 

nodes above the threshold to have the same weight regardless of observed energy 

differences between them [6].  The main idea behind the two-bit hard combination 

scheme is to divide the whole range of observed energy into more than two regions and to 

assign different weights to these regions [6].  By doing this, nodes that observe higher 

energies in upper regions have greater weights than nodes that observe lower energies in 
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lower regions [6].  Thus, the two-bit hard combination scheme outperforms the 

conventional one-bit hard combination scheme [6]. Also, this scheme has less 

communication overhead when compared to the traditional soft combination schemes in 

which test statistics are sent to the decision maker [6]. 

 Figure 14 shows the thresholds and weights for different regions of a two 

bit hard combination scheme.  There are three thresholds, as shown in Figure 14, which 

divide the range of observed energies into four regions [6].  For each region, the weights 

are defined as 

2
0 1 2 30, 1, ,w w w L w L     

where L  is a design parameter [6].  The decision criterion, which is used to declare the 

presence of the signal of interest, is given by [6] 

3 2

0 h hh
w N L


  

where hN  is the number of observed energies falling in region h .  According to this 

decision criterion, if there is one observed energy in Region 3, while there are no 

observed energies in other regions, or L  observed energies in Region 2, while there are 

no observed energies in other regions, or 2L  observed energies in Region 1, while there 

are no observed energies in other regions, the presence of the signal of interest is declared 

[6]. 
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Figure 14.   Energy Regions of the Two-Bit Hard Combination Scheme (From [6]). 

 In this method, each node sends a two-bit information to the decision 

maker to inform it as to which region the observed energy fell [6].  The three thresholds 

are determined by using Neyman-Pearson criterion (to meet the target overall false alarm 

probability of all nodes in the network) and optimizing the detection performance [6].  A 

detailed threshold determination method is presented in [6]. 

b. Proposed Three-bit Hard Combination Scheme 

 In this thesis, a new three-bit hard combination scheme for collaborative 

spectrum sensing is proposed.  Using the main idea of the two-bit hard combination 

scheme proposed in [6], in this case the whole range of observed energy is divided into 

more than four regions.  In particular, seven thresholds are used to divide the whole range 

of observed energy into eight regions.  Each node sends to the decision maker a three-bit 

information that indicates the region in which its observed energy fell.  Dividing the 

range of observed energy into more than eight regions causes each node to send more 

than three bits of information about the observed energy region, which means more 

overhead. 
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 Figure 15 shows the eight regions and the corresponding three-bit 

representations.  If a node observes an energy level falling in Region 7, it sends “111” to 

the decision maker.  If a node observes an energy level falling in Region 0 it does not 

send any information to the decision maker. 

 

Figure 15.   Energy Regions of the Proposed Three-Bit Hard Combination Scheme. 

  Thresholds of the three-bit hard combination scheme are determined using 

the Neyman-Pearson criterion.  Neyman-Pearson criterion is useful when the a priori 

probabilities and the cost assignments for each possible decision are difficult to assign 

[31].  In this criterion, while determining the threshold probability of false alarm FAp  is 

fixed to some value and the probability of detection Dp  is maximized [31].  Table 1 

shows the FAp  values chosen for determining the seven thresholds.   
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Threshold False Alarm 
Value 

λ 7 7 FAp  

λ 6 6 FAp  

λ 5 5 FAp  

λ 4 4 FAp  

λ 3 3 FAp  

λ 2  2 FAp  

λ 1 FAp  

Table 1.   Thresholds and the Corresponding False Alarm Values in the Three-Bit Hard 
Combination Scheme 

 The coefficients n  in Table 1 are found by  

( 1)( 1) 10 , 2,...,7n
n n n       

where n  is the threshold index and 1 1  . 

 The presence of the signal of interest is decided at the decision maker by 

use of the following equation  

7

1
h h

h

w N M


     (2) 

where M  is the total number of nodes in the network, hN  is the number of observed 

energies falling in region h  and hw  is the weight value of region h  shown in Table 2.  In 

particular, if the weighted sum in Equation 2 is greater than M , then the signal of interest 

is declared as present. 

Region  Weight 

7  = M  
6  = 20 

5  = 5 

4  = 2.500 
3  = 1.667 

2  = 1.250 
1  = 1 
0  = 0 

Table 2.   Energy Regions and Corresponding Weights in the Three-Bit Hard Combination 
Scheme, where M  is the Number of Nodes in the Network 
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 Weights shown in Table 2 are determined in the following manner.  If any 

one of the nodes observe energy in Region 7, with no observed energies in other regions, 

or 5% of all nodes observe energy in Region 6, with no observed energies in other 

regions, or 20% of all nodes observe energy in Region 5, with no observed energies in 

other regions, or 40% of all nodes observe energy in Region 4, with no observed energies 

in other regions, or 60% of all nodes observe energy in Region 3, with no observed 

energies in other regions, or 80% of all nodes observe energy in Region 2, with no 

observed energies in other regions, or 100% of all nodes observe energy in Region 1, 

with no observed energies in other regions, the signal of interest is said to be present.  

Table 3 summarizes the percentage of nodes required in a given region to declare the 

presence of the signal of interest, with no observed energies in other regions.  While other 

percentage values are possible, the chosen values in Table 3 provided satisfactory results. 

 

Region Required number of nodes to declare the presence of signal of 
interest in a given region with no observed energies in other regions 

7 1 node 

6 5% of all nodes 

5 20% of all nodes 

4 40% of all nodes 

3 60% of all nodes 

2 80% of all nodes 

1 100% of all nodes 

0 - 

Table 3.   Summary of the Weight Determination Approach used in this Thesis 

 Determining weights and thresholds are design issues.  For example, Table 

4 shows a different set of weights obtained by choosing a set of alternate percentage 

values.  Likewise, a different set of coefficients in Table 1 can be used.  For example, 

10 , 2,...,7n
n n    

where n  is the threshold index and 1 1  . 
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Region 
Required number of nodes to declare the 

presence of signal of interest in a given region 
with no observed energies in other regions 

Weight 

7 1% of all nodes  = 100 

6 5% of all nodes  = 20 

5 10% of all nodes  = 10 

4 20% of all nodes  = 5 
3 30% of all nodes  = 3.333 

2 40% of all nodes  = 2.500 
1 50% of all nodes  = 2 
0 -  = 0 

Table 4.   An Alternate Design for Determining the Weights of the Three-Bit Hard 
Combination Scheme 

D. RECEIVED SIGNAL STRENGTH (RSS) - BASED LOCALIZATION 

As mentioned in Chapter II.B, some of the RSS-based localization techniques 

require knowledge of the EIRP of the transmitter emitting the signal of interest.  This can 

be a limitation in using this technique for systems in which the EIRP of the signal of 

interest source is unknown, such as the scenario shown in Figure 1.  This section explains 

the RSS-based localization approach [5] used in the proposed sensor network based 

cooperative wideband spectrum sensing and localization scheme.  This localization 

approach does not require the EIRP of the transmitter emitting the signal of interest [5]. 

Figure 16 shows the network configuration proposed in [5].  In this network 

configuration, it is implicitly assumed that the radiation patterns of the transmitter 

antennas are azimuthally omni-directional.  In this scheme at least four nodes, whose 

positions are known, must measure the RSS values from the signal of interest source [5].  

Since every node sends its RSS measurement value and its position information to all 

other nodes, localization procedures can be applied on any node [5].   
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Figure 16.   A Planar Network Configuration for RSS-based Localization (From [5]). 

The ideal RSS value at the j th node is equal to the ideal received power, ,
ideal

r jP , 

which is given by [5]  

, , 1, 2,...ideal t
r j j

j

P
P C j M

d    (3) 

where tP  is the EIRP of the transmitter, jC  is a constant representing the factors 

effecting RSS, such as antenna gain and height,   is the path loss exponent, and jd  is 

the distance between the transmitter and the j th node, represented by 

2 2( ) ( )j j jd x x y y   where  ,x y  is the real position of the transmitter and  ,j jx y  

is the position of the j th node.  

The following process is applied to find the position of the transmitter.  First 

2 2( ) ( )j j jd x x y y    is substituted into Equation 3 [5], yielding 
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Taking the 2 /  power of both sides [5] yields 
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Isolating the 2 2
j jx y  term results in [5] 
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Since this last equation holds at each node, it can be extended to all nodes and expressed 

in matrix form as [5] 

2/

2/
1

1 1
,1

2 2
1 12/

2 2 2
2 2 2 2

,2

2 22 2

2/

,

2 2 1

2 2 1
(4)
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ideal
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M M

M
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r M
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x y
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x x y

C yx y x y
P

P

x yx y
C

x y
P









 
 

                                  
 
  


   

 

This linear equation can be solved by using the least squares method [5].  The solution of 

Equation 4 not only provides the position of the transmitter but also its EIRP.  In 

particular, the 
2/

( )tP


 value is found.  Once solved, the obtained x , y , and tP   quantities 

are termed as estx , esty , and estP , respectively. 
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 The shadowing effect is included using the log-normal path loss model, which is 

given by [5] 

, , 1, 2,...t
r j j

j j

P
P C j M

d S   

where 0.110 jX

jS   is a log-normal random variable, jX  is a Gaussian random variable, 

whose mean is zero and variance 2 , and the other parameters are the same as in 

Equation 3.  To minimize the unwanted effect of shadowing, RSS values ( ,r jP  values) are 

averaged as given by [5] 

, ,
1

1
(5)

R
ideal

r j r ji
i

P P
R 

   

where R  is the total number of samples and ,r jiP
 
is the i th sample RSS value at the j th 

node in dBm.   

E. SUMMARY 

This chapter presented the proposed sensor network based cooperative wideband 

spectrum sensing and localization scheme.  It was followed by a discussion of the 

fundamental techniques and approaches used in this scheme.  In particular, the MRSS, 

cooperative spectrum sensing, proposed three-bit hard combination and RSS-based 

localization schemes were discussed. 

The simulation model and simulation results are presented in the next chapter. 

The objective of the next chapter is to implement the proposed sensor network based 

cooperative spectrum sensing and localization scheme and analyze its performance. 
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IV.  SIMULATION MODEL AND RESULTS 

In Chapter III, the proposed sensor network based cooperative wideband spectrum 

sensing and localization scheme, which uses wavelet-based multi-resolution spectrum 

sensing (MRSS) [4], three-bit hard combination, and received signal strength (RSS)-

based localization [5] was presented.  This chapter presents the simulation scenario, 

followed by the simulation model developed to implement the proposed scheme.  Next, 

simulation results are presented.  In particular, the effects of window type, number of 

power spectral densities (PSDs) averaged, number of nodes, signal-to-noise ratio (SNR), 

and number of transmitters on detection performance of the cooperative wideband 

spectrum sensing part of the proposed scheme are discussed.  The effects of the number 

of samples, number of nodes, and standard deviation of the Gaussian random variable in 

shadowing model  , on performance of the localization part of the proposed scheme are 

also discussed.   

A. SIMULATION SCENARIO  

This section describes the simulation scenario presented in Figure 1. The scenario 

is shown in greater detail in Figure 17.  In this scenario, the RF sensor nodes are 

deployed randomly over an area of interest and they detect signals of interest in the air 

and determine the spectral bands of these signals.   Additionally, the positions and 

effective isotropic radiated powers (EIRPs) of the transmitters emitting these signals are 

estimated.  To accomplish its tasks, the sensor network applies the proposed sensor 

network based cooperative wideband spectrum sensing and localization scheme presented 

in Chapter III.A.  Figure 17 presents a typical scenario for military applications, since the 

RF sensor network is deployed away from the transmitters. 

The following assumptions apply to this simulation scenario: 

1. After the sensor nodes are deployed, the positions of the nodes are calculated 

and a node is designated as decision maker. 
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2. Before the localization process starts, RSS values at each node due to the 

transmitters are measured. 

3. The distances between the nodes are more than the half of the wavelength of 

the signal of interest.  

 

Figure 17.   Simulation Scenario. 

 The algorithm of the proposed scheme presented in Chapter III.A is summarized 

here for convenience.  Firstly, the decision maker node determines seven thresholds.  

Secondly, all nodes, except for the decision maker, apply coarse resolution spectrum 

sensing to the entire bandwidth of interest.  Then, each of these nodes determines the 

three-bit local observation values by applying the seven thresholds and sends them to the 

decision maker.  The decision maker determines the occupied spectrum bands and 

selected nodes then apply fine resolution spectrum sensing on these spectrum bands.  

Through fine resolution sensing, the frequency bands of the signals in the air are 
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determined.  To find the positions of the transmitters emitting these signals, the decision 

maker applies the RSS-based localization scheme by using the averaged RSS values and 

node positions.  

B.  SIMULATION MODEL 

Figure 18 and Figure 19 depict the simulation block diagrams of the cooperative 

wideband spectrum sensing part and the localization part of the proposed sensor network 

based cooperative wideband spectrum sensing and localization scheme, respectively.   

The implementation of the “determination of seven thresholds,” “coarse 

resolution sensing,” and “fine resolution sensing” blocks in Figure 18 is carried out by 

using the wavelet-based MRSS scheme [4] discussed in Chapter III.B.1.  Threshold 

determination takes place at the decision maker.  Coarse resolution sensing is applied by 

all nodes except the decision maker, whereas only selected nodes apply fine resolution 

sensing.  The implementation of the “determination of the three-bit values” and “three-bit 

hard combination” blocks in Figure 18 is carried out by using the proposed three-bit hard 

combination scheme discussed in Chapter III.C.3.  Three-bit values are determined by the 

nodes after the coarse resolution sensing.  Three-bit hard combination takes place at the 

decision maker.  The “fine resolution sensing” block is applied to determine the 

frequency band of the signal.  The “RSS measurement” and “calculation of node 

positions” blocks in Figure 19 are not implemented in this thesis; therefore the RSS 

measurements and node positions are assumed to be given.  The function of the 

“averaging” block is to minimize the unwanted effect of shadowing.  The implementation 

of the “RSS-based localization” block is carried out by using the scheme [5] explained in 

Chapter III.D.  The model was implemented in MATLAB programming language.  The 

following subsections describe each of the blocks shown in Figure 18 and Figure 19. 
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Figure 18.   Simulation Block Diagram of the Cooperative Wideband Spectrum Sensing 
Part of the Proposed Scheme. 

 

Figure 19.   Simulation Block Diagram of the Localization Part of the Proposed Scheme. 
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1. Cooperative Wideband Spectrum Sensing 

a. Determination of Seven Thresholds 

  Figure 20 shows the multi-resolution spectrum sensing [4] diagram for the 

implementation of the “determination of seven thresholds” block of Figure 18.  This 

block diagram consists of a low noise amplifier (LNA), a window (wavelet) generator, a 

cosine function generator, multipliers, integrators and an envelope detector.  In 

determining seven thresholds, a noise only input is considered.  

 

Figure 20.   Multi-Resolution Spectrum Sensing Diagram for the Implementation of 
“Determination of Seven Thresholds” Block (After [24]). 

  For the LNA, gain and noise figure values are assumed to be 40dBG   and 

5dBF  , respectively.  Thermal noise is given by [32]    

Thermal SysN G T B   
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where G  is the gain of the LNA,  231.38 10 J/K    is the Boltzmann constant, SysT   is 

the system temperature, and B  is the bandwidth of the system.  System temperature is 

given by [32] 

Sys Ant Line F PreAmpT T T L T        (6) 

where AntT   is the antenna temperature, LineT  is the line temperature, FL  is the line-loss 

factor, and PreAmpT   is the preamplifier temperature.  Assuming a lossless line between the 

antenna and the LNA, and that the antenna temperature is 290K , Equation 6 becomes 

290KSys PreAmpT T     

where ( 1) 290KPreAmpT F    . After substituting 3.16F   into this equation, the system 

temperature is calculated as 916.4KSysT   . The thermal noise value follows as  

_ _Thermal dB dB dB Sys dB dBN G T B      (7) 

where 40dBG  , 228.60dB    and _ 29.62Sys dBT  .  Since the window length in 

threshold determination is 0.1 μs, which corresponds to a 10 MHz system bandwidth, the 

thermal noise value is determined as 88.98 dB .   

  As will be explained in Chapter IV.C.1, a rectangular window is used 

since it is found to provide a high detection margin.  The rectangular window is defined 

by [33] 

1, 0
[ ]

0, otherwise
wn N

W n
 

 


 

where the window length is equal to 1wN  .  Window pulse length gT  is equal to 

( 1) /w sN f , where sf  is the sampling frequency. Note that gT  is changed to apply multi-

resolution spectrum sensing.  Sampling frequency sf  is chosen as 1 GHz.  The frequency 

spectrum of interest is assumed to be between 31 MHzstartf   and 130 MHzstopf  .  

  Outputs of the integrators are given by 
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 
0

1
( ) ( ) ( ) cos(2 ) for 0,...,
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I k
g

z k r t g t f t dt k K
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     
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0

1
( ) ( ) ( ) sin(2 ) for 0,...,

gT

Q k
g

z k r t g t f t dt k K
T

     

where ( )g t  is the rectangular window pulse with length gT , 6(31 10 )k sweepf kf    and 

Round[(130MHz 31MHz) / ]sweepK f  .  For determination of seven thresholds, sweepf  

and gT  values are chosen as 5 MHz and 0.1 μs, respectively. 

  The envelope detector in Figure 20 outputs a Rayleigh distributed variable 

when the input is a Gaussian random variable [34].  The output of the envelope detector 

is given by  

2 2( ) ( )k I QP z k z k  . 

To improve the performance of the MRSS scheme, kP , which provides an estimate of 

PSD, is calculated by averaging over Q values [4]. 

  While determining thresholds, the distributions of the “noise only” inputs 

at the envelope detector are assumed Gaussian with zero mean and a variance of 2 .  

With this assumption, the output of the envelope detector has a Rayleigh distribution with 

scale parameter  .  A Rayleigh distribution with scale parameter   is identical to a 

Weibull distribution with shape parameter 2 and scale parameter 2  [35].  Thresholds 

are the values limiting the areas under the probability density function of this output 

distribution.  In particular, the thresholds are determined by calculating the areas under 

the Weibull distribution for different FAp  values given in Table 1.  Then these threshold 

values are converted to dB values by taking the logarithm and multiplying by 10.  An 

alternate method to determine the thresholds is by finding the areas under the extreme 

value distribution, which is also known as a log-Weibull distribution, and then 

multiplying them by 10. 
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b. Coarse Resolution Sensing 

  After the thresholds are determined and the nodes are informed about 

these threshold values, the “coarse resolution sensing” block is implemented by using the 

diagram shown in Figure 21 to quickly examine the spectrum.  Parameters sweepf  and  gT  

are chosen as 2 MHz and 2 μs, respectively.  Power spectral density (PSD) is obtained 

from the output of Figure 21. 

  In Figure 21, to generate the RF signal, for simplicity, each transmitter is 

assumed to broadcast the same information signal.  The length of the RF signal is 

assumed to be equal to the window length.  The ideal received power (i.e., ideal RSS 

value) at each node is given by Equation 3.   In Equation 3, tP  values for each transmitter 

are assumed to be 1 W, and jC  constants for all nodes and the path loss exponent   are 

chosen as 1 and 3, respectively.  Table 5 lists the transmitter specifications; note that the 

signals generated by each transmitter use different modulation schemes.  Distance values 

in Equation 3 are calculated using the positions of the transmitters and nodes as given in 

Table 6.  Sampling frequency is assumed to be 1 GHz. 

  The shadowing effect is included using the log-normal path loss model 

given by [5] 

,
,

ideal
r j

r j
j

P
P

S
    (8) 

where ,r jP  is the received power (RSS value) at the j th node, 0.110 jX

jS   is a log-normal 

random variable, and jX  is a Gaussian random variable whose mean is zero and variance 

is 2 .  The thermal noise value for coarse resolution sensing is calculated as 101.99 dB  

from Equation 7 by setting the system bandwidth to 0.5 MHz. 
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Figure 21.   Multi-Resolution Spectrum Sensing Diagram for the Implementation of 
“Coarse Resolution Sensing” Block (After [24]). 

 
 

Transmitter  Modulation EIRP (W) Frequency (MHz) x coordinates (m) y coordinates (m) 

Transmitter 1 PM 1 41 700 2700 

Transmitter 2 64QAM 1 105 2600 1800 

Transmitter 3 16QAM 1 95 1500 1100 

Table 5.   Transmitter Specifications 
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Node x coordinates (m) y coordinates (m) 

1 700 250 

2 900 100 

3 1000 200 

4 300 100 

5 200 300 

6 1100 400 

7 500 450 

8 800 500 

9 100 550 

10 400 600 

11 100 50 

12 800 150 

13 500 200 

14 200 200 

15 50 300 

16 600 350 

17 900 400 

18 150 450 

19 700 500 

20 1000 600 

Table 6.   Coordinates of the Nodes 

c. Determination of Three-bit Values 

  After the coarse resolution sensing, the “determination of three-bit values” 

block follows.  The result of the coarse resolution sensing is compared with the seven 

thresholds and three-bit values are determined for each frequency value at every node.  

Figure 15 shows the energy regions with the corresponding three-bit local observation 

values that will be sent to the decision maker when there is an observed energy in that 

region. 

d. Three-bit Hard Combination 

  The function of the “three-bit hard combination” block in Figure 18 is to 

combine the sensing results of the nodes and to detect the signals in the air by using the  
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proposed three-bit hard combination scheme at the decision maker.   The decision 

criterion given by Equation 2 and the weights given in Table 2 are used to determine the 

presence of the signal of interest.  

e. Fine Resolution Sensing 

  As a last stage, the “fine resolution sensing” block is implemented with 

the same diagram used for the “coarse resolution sensing” block shown in Figure 21.  The 

objective of fine resolution sensing is to determine the frequency band of the signal.  The 

differences from coarse resolution sensing are the values of sweepf  and gT , which are 

chosen as 500 kHz and 4 μs, respectively.  The result of the three-bit hard combination 

scheme determines the spectrum bands on which fine resolution sensing will be applied, 

and the nodes that will apply fine resolution sensing.  Then, fine resolution sensing is 

applied on these spectrum bands by the nodes that sense the highest energies in these 

bands.   

2. RSS-Based Localization 

Figure 19 shows the simulation block diagram for the localization part of the 

proposed scheme.  As mentioned earlier, RSS measurement and calculation of node 

positions are not implemented in this thesis, but they are assumed to be given.    

a. Averaging 

  The function of the “averaging” block in Figure 19 is simply to minimize 

the shadowing effect.  As in the cooperative wideband spectrum sensing part, shadowing 

effect is included by the log-normal path loss model given by Equation 8.  RSS values are 

averaged using Equation 5. 

b. RSS-Based Localization 

 The “RSS-based localization” block in Figure 19 is implemented by 

solving Equation 4.  As in Chapter IV.B.1.b, we assume that jC  values for all nodes are 
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equal to 1, path loss exponent   is 3, and node positions are as shown in Table 6.  Note 

that RSS values at each node, ,r jP , are assumed to be given. 

 A least squares method [5] is used to solve Equation 4.  If we define the 

components of Equation 4 as 
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we obtain  

(9)     

Since matrix 

 

in Equation 9 may not have full rank, implying that the least-squares 

solution may not be unique [35], implementation of least squares method is accomplished 

by a pseudo-inverse approach: 

†     

where † is the Moore-Penrose pseudo-inverse matrix of  , which provides the minimal 

norm solution [35].   

C. COOPERATIVE WIDEBAND SPECTRUM SENSING RESULTS 

Coarse resolution sensing, which is applied with the three-bit hard combination to 

detect signals in the air, and fine resolution sensing, which is used to determine the 

frequency bands of these signals, are the two most important functions of cooperative 

wideband spectrum sensing.  This section starts with the results of coarse and fine 

resolution sensing applied at the sensor nodes.  Then, the simulation results of the 

cooperative wideband spectrum sensing part of the proposed scheme are presented.  In 
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particular, the effects of window type, number of PSDs averaged, number of nodes, SNR, 

and number of transmitters on detection performance of the cooperative wideband 

spectrum sensing part of the proposed scheme are evaluated.  

The SNR definition given by 

10

Signal Power
10log

Noise Power
SNR

 
  

 

 

is used throughout this thesis. 

Figure 22 shows the result of coarse resolution sensing, with the parameters given 

in Chapter IV.B.1.b, applied between a 31 MHz and 130 MHz band at Node 2.  The three 

peak values at 41 MHz, 95 MHz, and 105 MHz correspond to the three transmitters 

whose specifications are given in Table 5.  Figure 22 also shows the seven thresholds that 

divide the whole range of observed energy into eight regions defined in Figure 15.  As 

can be seen from Figure 22, the observed energies at 41 MHz, 95 MHz and 105 MHz are 

in regions 0, 7 and 1, respectively.  With this information, it can be deduced that Node 2 

will send a three-bit local observation value of “111” for 95 MHz and “001” for 105 

MHz.  Since the observed energies at other frequencies are in Region 0, no information 

will be sent to the decision maker for these frequencies.  Table 7 summarizes the local 

observation values formed at Node 2. 

 

Frequency Region of 
Observed Energy 

Three-Bit Local 
Observation Value 

41 MHz 0 - 

95 MHz 7 111 

105 MHz 1 001 

Other 0 - 

Table 7.   Summarization of Local Observation Values formed by Node 2 



 50

 

Figure 22.   Result of Coarse Resolution Sensing of a 31 – 130 MHz band at Node 2. 

 If we assume that after the coarse resolution sensing stage that the node sensing 

the highest energy between 91 MHz and 100 MHz band is Node 2, the decision maker 

will demand from Node 2 a fine resolution sensing of 91 to 100 MHz band.  Figure 23 

shows the result of fine resolution sensing applied by Node 2 on the 91 – 100 MHz band.  

The parameters used for this fine resolution sensing can be found in Chapter IV.B.1.e.  

The maximum threshold value below the maximum observed energy determined by 

coarse resolution sensing on 91 to 100 MHz band, which is Threshold 7, is also shown in 

Figure 23.  The peak value in the plot shows that the frequency of the signal is 95 MHz 

and its bandwidth is less than 500 kHz, since the resolution of fine resolution sensing is 

chosen to be 0.5 MHz. 
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Figure 23.   Result of the Fine Resolution Sensing of 91 – 100 MHz at Node 2. 

In the following subsections, except for the effect of window type, detection 

percentage is used as a detection performance measure, simulations are run 1000 times, 

the standard deviation 

 

 of the Gaussian variable in Equation 8 is set to 10 and the 

probability of false alarm is chosen as 0.1.  Detection percentage is defined as  

 

 (10) 

 

While studying the effect of window type, detection margin is used as a performance 

measure, the simulation is run for 10,000 times, the standard deviation 

 

 of the 

Gaussian variable in Equation 8 is set to 1 and the probability of false alarm is chosen as 

0.1.  Detection margin is defined as 
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For all simulations, except in Chapter IV.C.5, for simplicity, only one transmitter, 

Transmitter 3, as specified in Table 5, is assumed to emit a signal.  The values of the 

other parameters are the same as given in Chapter IV.B.1.b. 

1. Effect of Window Type 

In the implementation of the “determination of seven thresholds,” “coarse 

resolution sensing,” and “fine resolution sensing” blocks, a window is generated as 

shown in Figure 20 and Figure 21.  The effect of the type of the window is studied by 

measuring the energy level at 95 MHz with coarse resolution spectrum sensing, and 

calculating the detection margin above the seventh threshold at Node 2, while the number 

of PSDs is 10 and the SNR is equal to 0.   

Figure 24 shows the detection margin measurements for different windows.  As 

can be seen from this figure, a rectangular window provides the best detection margin at a 

value of 7.268 dB above the seventh threshold.  Using a Kaiser window, a very close 

detection margin of 7.258 dB is obtained.  The Flattop window provides the least 

detection margin at a value of 4.477 dB.  The results for the Blackman-Harris and 

Hamming windows fall in between these values.  Based on these results, a rectangular 

window is used in all of the simulations in this thesis. 

 

Figure 24.   Detection Margin versus Window Type. 
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2. Effects of Number of PSDs Averaged 

In Chapter III.B.1, it is mentioned that by calculating kP , which represents the 

PSD at frequency kf , more than once and then averaging the results, a reduced noise 

floor level and more discernable signal spectra is obtained [4].  As mentioned in Chapter 

IV.B.1.a, kP  is calculated Q  times and then averaged, so Q  is the number of PSDs 

averaged. 

Figure 25 depicts the effect of the number of PSDs averaged on detection 

percentage as a function of the number of nodes participating in cooperative wideband 

spectrum sensing at SNR= 20 dB .  Figure 26 shows the plots of detection percentage 

versus number of PSDs averaged for different SNR values when there are ten nodes 

participating in the cooperative wideband spectrum sensing.  Both figures indicate that 

when the number of PSDs averaged is increased, the detection percentage increases.  This 

result is consistent with the expected effect of the averaging.  

In Figure 25, when the number of PSDs averaged is less than twenty, eight nodes 

perform better detection than twelve or sixteen nodes.  This is due to the positions of the 

nodes and the applied decision criterion, and will be explained in greater detail in Chapter 

IV.C.3. 

 

Figure 25.   Detection Percentage versus Number of PSDs Averaged for Three Different 
Number of Nodes. 
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Figure 26 shows that for a particular number of PSDs averaged, when the SNR is 

low, the detection percentage degrades; however, if the number of PSDs averaged is 

increased, detection performance can be improved.  These are expected results for energy 

detectors and will be explained in further detail in Chapter IV.C.4. 

 

Figure 26.   Detection Percentage versus Number of PSDs Averaged for Three Different 
SNR Values. 

3. Effects of Number of Nodes 

Because of scarce battery energy or environmental effects, sensor nodes fail in 

wireless sensor networks [36].  In these cases the number of nodes participating in the 

cooperative wideband spectrum sensing can change.   

Figure 27 shows the plots of detection percentage versus number of nodes 

cooperating for three different numbers of averaging values at SNR= 20 dB .  Figure 28 

depicts the effect of number of nodes cooperating on detection percentage at three 

different SNR values when the number of PSDs averaged is 10.  It is difficult to see the 

effect of the number of nodes on detection percentage at a first glance. 
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In Figure 27, for the plot of 10 PSDs averaged, a maximum detection percentage 

is obtained when there are twenty nodes participating in the cooperative wideband 

spectrum sensing. The second maximum detection percentage value occurs when the 

participating number of nodes is eight.  For the other values of numbers of nodes on this 

plot, varying detection percentage values are obtained.  The reason for this is the 

positions of the nodes and the applied decision criterion.  The positions of Node 8 and 

Node 20 are (800 m, 500 m) and (1000 m, 600 m), respectively.  It can be deduced from 

Table 5 and Table 6 that these are the two closest nodes to Transmitter 3.  When the 

number of participating nodes is more than eight, Node 8 already participates in spectrum 

sensing but this time since there are more than eight nodes in the system, the decision 

criterion requires more nodes observing energy for a particular energy region.  Because 

of these two reasons, the plot of 10 PSDs averaged is not smooth.  For higher numbers of 

PSDs averaged, smoother plots are obtained.  This shows that if more PSDs are averaged, 

the non-smooth effect can be eliminated.  

 

Figure 27.   Detection Percentage versus Number of Nodes for Three Different Number of 
PSDs Averaged. 

As seen in Figure 28, for a particular value of number of nodes, lower detection 

percentage is obtained when SNR is low.  This result is consistent with the results of 
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Figure 26.  Figure 28 also indicates that the non-smooth effect of the positions of the 

nodes and the applied decision criterion disappears when the SNR is higher. 

 

Figure 28.   Detection Percentage versus Number of Nodes for Three Different SNR 
Values. 

4. Effects of SNR 

As mentioned in Chapter III.B, MRSS is a kind of energy detector [9] and the 

performance of energy detectors depends on the SNR level [8].   

Figure 29 shows the effect of SNR on detection percentage for three different 

number of PSDs averaged values when there are ten nodes participating in cooperative 

wideband spectrum sensing.  Figure 30 shows the plots of detection percentage versus 

SNR for three different number of node values cooperating when the number of PSDs 

averaged is ten.  Both figures indicate that when the SNR is higher, the proposed scheme 

performs better in detection.  

In Figure 29, for a particular SNR value, when more PSDs are averaged, a higher 

detection percentage is obtained.  This result is consistent with the discussion in [8], 
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which mentions the need for longer detection time to detect weak signals in energy 

detectors.  When the number of PSDs averaged is increased, it takes more time to decide 

the presence of the signal of interest.  

 

Figure 29.   Detection Percentage versus SNR for Three Different Number of PSDs 
Averaged. 

As explained in Chapter IV.C.3, the positions of the nodes and the applied 

decision criterion may affect the detection performance and may cause lower detection 

percentages for higher number of nodes.  This effect is also seen in Figure 30.  When 

sixteen nodes cooperate compared to eight and twelve, a lower detection percentage is 

obtained. 
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Figure 30.   Detection Percentage versus SNR for Three Different Number of Nodes 
Values. 

5. Effect of Number of Transmitters 

To evaluate the detection performance of the proposed scheme when there is more 

than one transmitter in the medium, three different scenarios are considered.  Figure 31 

shows the performance of the proposed scheme on the detection of the signal emitted by 

Transmitter 3 for the following scenarios: 

1. Only Transmitter 3 is present, 

2. Transmitter 1 and Transmitter 3 are present, 

3. Transmitter 1, Transmitter 2 and Transmitter 3 are present. 

As shown in Figure 31, when other transmitters are present in the medium, 

percentage of detecting the signal emitted by Transmitter 3 decreases.  This is an 

expected result since the signals of Transmitter 1 and Transmitter 2 contribute to the 

channel noise while the signal of Transmitter 3 is being detected.   
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Figure 31.   Detection Percentage of Transmitter 3 versus SNR for Three Different 
Scenarios. 

D. COMPARISON OF PROPOSED THREE-BIT HARD COMBINATION 
SCHEME WITH TRADITIONAL HARD COMBINATION SCHEMES 

The traditional combination schemes and proposed three-bit hard combination 

scheme were explained in Chapter III.C.  As mentioned in Chapter III.C.1, two of the 

decision rules used by the traditional hard combination scheme are logical-OR rule and 

majority rule [28].  This section compares the detection and false alarm performances of 

the proposed three-bit hard combination scheme and the traditional hard combination 

schemes using logical-OR rule and majority rule.   

In all the simulations of this section, it is assumed that there are 10 nodes 

participating in the cooperative wideband spectrum sensing, the number of PSDs 

averaged is 10, 

 

(standard deviation of the Gaussian variable in the shadowing model) 

is 10, and the probability of false alarm is 0.1.  All results are obtained after 1000 runs of 

the simulation.  When comparing detection performances of the three combination 

schemes, the detection percentage metric defined in Equation 10 is used, whereas for 

false alarm performance, the false alarm percentage defined by  



 60

%
stop start sweep

Number of  values that give false alarm more than / 2 times
100

Round[( ) / ]
k simf N

FA
f f f

 


 

is used, where simN  is the number of simulation runs. 

Figure 32 shows the detection percentage versus SNR, for three combination 

schemes.  It shows that when the SNR is between –25 dB and –18 dB,

 

the traditional hard 

combination schemes have a better detection percentage than the proposed three-bit hard 

combination scheme.  In particular, the traditional hard combination scheme using 

logical-OR rule is fairly superior to the other two schemes for SNR 18 dB  .   This is 

due to the fact that for declaring the presence of the signal of interest, only one node 

sensing energy above the threshold is enough in a traditional hard combination scheme 

using logical-OR rule.  This fact brings the high detection performance for 

SNR 18 dB   to the traditional hard combination scheme using logical-OR rule.  The 

disadvantage of this fact can be seen when false alarm performances are compared. 

 

Figure 32.   Detection Percentage versus SNR for Three Combination Schemes. 

Figure 33 shows the false alarm performances of the three combination schemes.  

In particular, the y-axis denotes the percentage of the scanned frequencies in coarse 

resolution sensing that contributes to false alarm for more than 50% of the simulation.  
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The x-axis shows the different SNR values.  It can be seen from Figure 33 that the 

proposed three-bit hard combination scheme presents robust false alarm performance 

compared to the two traditional hard combination schemes.  Especially, the fact of 

sufficiency of only one node sensing energy above the threshold to declare the presence 

of the signal of interest causes the traditional hard combination scheme using logical-OR 

rule to present the worst false alarm performance.  For example, with the traditional hard 

combination scheme using logical-OR rule, at SNR = 10 dB , 62.63% of the scanned 

frequencies in coarse resolution sensing will be sent to the fine resolution sensing block 

redundantly. 

 

Figure 33.   False Alarm Percentage versus SNR for Three Combination Schemes. 

When the results of Figure 32 and Figure 33 are analyzed, the following 

conclusions can be made.  The higher percentage of the scanned frequencies in coarse 

resolution sensing that contribute to false alarms means that some of the nodes will apply 

fine resolution sensing unnecessarily.  This is a waste of scarce battery energy for 

redundant computations and communications between the node and the decision maker.  

As mentioned in Chapter IV.C.2, the detection performance of the three-bit hard 

combination scheme can easily be improved by increasing the number of PSDs averaged.  

Increasing the number of PSDs averaged requires more computations, but the cost of 
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these excess computations is less than the cost of the communication overload, which 

requires more battery power in wireless sensor networks [37].  Because of this, even the 

traditional hard combination using logical-OR rule presents better detection performance 

for conditions where SNR 18 dB  ; proposed three bit combination scheme is more 

convenient for the RF sensor networks considered in this thesis. 

E. RSS-BASED LOCALIZATION RESULTS 

This section presents the simulation results of RSS-based localization [5] used in 

the localization part of the proposed sensor network based cooperative wideband 

spectrum sensing and localization scheme.  To evaluate the performance of the RSS-

based localization scheme, mean square error (MSE) for position and the average 

absolute power estimation error (PEE) are used. MSE is defined as  
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where  ,x y  is the true position of the transmitter,  , ,,est n est nx y  is the n th position 
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where tP  is the true EIRP of the transmitter and ,est nP  is the n th EIRP estimation.  In 

particular, the effects of number of samples, number of nodes, and 

 

 (standard 

deviation of the Gaussian random variable used in the shadowing model) on the above 

error parameters are studied. 

Localization simulation is applied to estimate the position and EIRP of 

Transmitter 3.  All results are obtained by running the simulation 10,000 times and 

averaging the results.  As mentioned in Chapter IV.B.2.b, it is assumed that jC  constants 

representing the factors affecting the RSS values at j th node are chosen as 1, path loss  
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exponent   is 3, and node positions are as shown in Table 6.  It is further assumed that 

the EIRP of Transmitter 3 is 1 W and its position is (1500 m, 1100 m) as given in Table 

5. 

1. Effects of Number of Samples 

As explained in Chapter IV.B.2.a, every node samples RSS values R  times and 

takes the average of these values to minimize the unwanted effect of shadowing.   

Figure 34 shows the plots of the position estimation MSE versus number of 

samples for different number of nodes values with 3  .  Figure 35 depicts the effect of 

the number of samples on position estimation MSE for different values of  when there 

are five nodes participating in the localization process.  Both Figure 34 and Figure 35 

indicate that when the number of samples R

 

 is increased, the error in position estimation 

decreases.  This is an expected result because when the number of samples is increased, 

the unwanted effect of shadowing decreases and the localization scheme produces better 

estimations.  In both figures, the rate of decrease in position error reduces when the 

number of samples increases. 

In Figure 34, for a particular value of number of samples, when the number of 

nodes participating in the localization process is increased from five to ten, position 

estimation MSE decreases dramatically, whereas an increase from ten nodes to fifteen 

nodes does not provide a remarkable improvement in position estimation MSE.   
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Figure 34.   Position Estimation MSE versus Number of Samples for Three Different 
Numbers of Nodes with 3  .  

In Figure 35, for a particular number of samples, when the   increases, the error 

in position estimation also increases.  This is an expected result, because higher   

implies a severe shadowing effect.   

 

Figure 35.   Position Estimation MSE versus Number of Samples for Three Different   
Values when Five Nodes Participate in Localization. 
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Figure 36 and Figure 37 show the effects of number of samples on average 

absolute power estimation error for different values of number of nodes and standard 

deviation  , respectively.  Both graphs present the same effects seen on Figure 34 and 

Figure 35, as explained above.  In particular, the average absolute power estimation error 

decreases when the number of samples is increased.  For a particular number of samples 

value, when the number of nodes is increased or the standard deviation   is reduced, 

lower estimation error occurs. 

 

Figure 36.   Average Absolute Power Estimation Error versus Number of Samples for 
Three Different Number of Nodes with 3  .  
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Figure 37.   Average Absolute Power Estimation Error versus Number of Samples for 
Three Different   Values when Five Nodes Participate in Localization. 

2. Effects of Number of Nodes 

It was mentioned in Chapter IV.C.3 that because of limited battery power or 

environmental effects, sensor nodes can fail in wireless sensor networks [36].  Since 

sensor nodes collaborate in the proposed scheme, the number of nodes participating in 

localization affects the localization performance. 

Figure 38 depicts the plots of the position estimation MSE versus number of 

nodes for different values of number of samples when 3  .  Figure 39 shows the effect 

of the number of nodes on position estimation MSE for different values of   when the 

number of samples is 200.  Both Figure 38 and Figure 39 show that even though there are 

small fluctuations in the plots, when the number of nodes participating in the localization 

process increases, the error in position and power estimations decreases.  The fluctuations 

in the plots are due to the positions of the nodes as explained in Chapter IV.C.3. 

In Figure 38, it can be seen that for a given number of nodes value, when more 

samples are used to determine the averaged RSS value, the error in position estimation 

decreases.    
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Figure 38.   Position Estimation MSE versus Number of Nodes for Three Different 
Numbers of Samples with 3  .  

In Figure 39, for a specific number of nodes value, a higher   worsens the 

shadowing effect and increases the error in position estimation. 

 

Figure 39.   Position Estimation MSE versus Number of Nodes for Three Different   
Values when the Number of Samples is 200. 
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Figure 40 and Figure 41 show the effects of number of nodes on average absolute 

power estimation error for different values of number of samples and standard deviation 

 , respectively.  Both graphs present the same effects seen in Figure 38 and Figure 39.  

In particular, the average absolute power estimation error decreases when the number of 

nodes is increased.  For a particular number of nodes value, when the number of samples 

is increased or standard deviation   is decreased, estimation error decreases. 

 

Figure 40.   Average Absolute Power Estimation Error versus Number of Nodes for Three 
Different Numbers of Samples with 3  .  
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Figure 41.   Average Absolute Power Estimation Error versus Number of Nodes for Three 
Different   Values when the Number of Samples is 200. 

3. Effects of   

Shadowing affects measured RSS values [5].  As mentioned in Chapter IV.B.2.a, 

a log-normal path loss model is used to include the shadowing effect.  Standard deviation 

of the Gaussian variable 

 

in Equation 8 determines the level of the shadowing effect.   

Figure 42 depicts plots of the position estimation MSE versus

 

  for different 

values of the number of samples in RSS averaging when there are five nodes 

participating in the localization process.  Figure 43 shows the effects of   on position 

estimation MSE for different numbers of nodes participating in the localization process 

when the number of samples is 200.  Both Figure 42 and Figure 43 show that when   

increases, the shadowing effect becomes severe and the error in position estimation 

increases.   

In Figure 42, it can be seen that for a given 

 

value, when the number of samples 

is increased, the disturbance caused by the shadowing effect is reduced and error in 

position estimation decreased.    
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Figure 42.   Position Estimation MSE versus   for Three Different Numbers of Samples 
when Five Nodes Participate in Localization. 

Figure 43 shows that for a given 

 

value, when the number of nodes 

participating in the localization process increases from five to ten, the position estimation 

MSE decreases dramatically, whereas an increase from ten nodes to fifteen nodes does 

not provide a remarkable improvement in position estimation MSE.   

 

Figure 43.   Position Estimation MSE

 

versus   for Three Different Numbers of Nodes 
when the Number of Samples is 200. 
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Figure 44 and Figure 45 show the effects of   on average absolute power 

estimation error for different values of number of samples and number of nodes, 

respectively.  Both graphs present the same effects seen in Figure 42 and Figure 43, 

explained above.  In particular, the average absolute power estimation error increases 

when standard deviation   increases.  For a given   value, an increase in the number of 

samples or the number of nodes decreases the average absolute power estimation error. 

 

Figure 44.   Average Absolute Power Estimation Error versus   for Three Different 
Numbers of Samples when Five Nodes Participate in Localization. 
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Figure 45.   Average Absolute Power Estimation Error versus   for Three Different 
Numbers of Nodes when Number of Samples is 200. 

F. INSTANTANEOUS ESTIMATION RESULTS 

In previous sections of this chapter, the results presented for the proposed sensor 

network based cooperative wideband spectrum sensing and localization scheme were 

based on a large number of simulation runs (1000 or 10000).  This section presents 

instantaneous results of the proposed scheme.  The results are based on a small number, 

specifically one and five simulation runs. 

Figure 46 shows the result of cooperative wideband spectrum sensing applied by 

12 nodes when the probability of false alarm is 0.1, SNR is –9 dB,   is 10, and other 

parameters are as assumed in Chapter IV.B.1.  As can be seen from Figure 46, nodes are 

able to detect Transmitter 2 and Transmitter 3.  Since the distances between Transmitter 1 

and the nodes are greater, Transmitter 1 cannot be detected. 
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Figure 46.   Instantaneous Estimation Result of Cooperative Wideband Spectrum Sensing 
with 12 Nodes when FAp = 0.1, SNR = 9 dB , and  =10 .  

Figure 47 shows the power and position estimations of RSS-based localization 

applied by 12 nodes with  =10 , =3 , =500M , and other parameters as assumed in 

Chapter IV.B.2.  Transmitters have the specifications listed in Table 5.  Five position 

estimations of each transmitter are shown with crosses.  To minimize the clutter in the 

figure, only one power estimation value for each transmitter is shown in Figure 47.  As 

can be seen from this figure, since Transmitter 3 is closer than the other two transmitters, 

position estimations for this transmitter are more precise. 
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Figure 47.   EIRP and Position Estimations of RSS-based Localization Scheme with 12 
Nodes when =10  , =3  and =500M .  

 G. SUMMARY 

This chapter presented the simulation model developed to implement the 

proposed scheme, and the simulation results.  Firstly, coarse and fine resolution sensing 

results for a node were illustrated.  For cooperative wideband spectrum sensing, 

simulation results showing the effects of the window type on detection margin, the effects 

of number of PSDs averaged, number of nodes, SNR, and number of transmitters on the 

detection percentage of the cooperative wideband spectrum sensing part of the proposed 

scheme were illustrated.  Simulation results comparing the proposed three-bit hard 

combination scheme with traditional hard combination schemes were also presented.   

For RSS-based localization, simulation results showing the effects of number of 

samples, number of nodes, and   (standard deviation of the Gaussian variable in the 

shadowing model) on mean square error of position estimation and average absolute 

power estimation error were illustrated.  Lastly, instantaneous estimation results of 

cooperative wideband spectrum sensing and RSS-based localization were presented. 
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V. CONCLUSIONS 

This thesis focused on spectrum sensing and localization with radio frequency 

(RF) sensor networks.  An RF sensor network can be deployed over an area of interest to 

detect the signals in the air, to determine the frequencies of these signals, and to estimate 

the positions and effective isotropic radiated powers (EIRPs) of the transmitters emitting 

these signals.  Maximizing the signal detection performance and the accuracy of position 

and power estimations with a minimal computation complexity is an additional objective. 

A. SUMMARY OF THE WORK DONE 

To meet these objectives, a sensor network based cooperative spectrum sensing 

and localization scheme was proposed.  Wavelet-based multi-resolution spectrum sensing 

(MRSS) [4] and received signal strength (RSS)-based localization [5] methods, which 

were originally proposed for cognitive radio applications, were adapted to RF sensor 

networks to implement spectrum sensing and localization.  A new three-bit hard 

combination technique was proposed for cooperation of the nodes.  A simulation model 

was developed in MATLAB programming language to implement the proposed scheme 

and to analyze its simulation performance.  Different window types, number of power 

spectral densities (PSDs) averaged, number of nodes, signal-to-noise-ratio (SNR) values, 

and number of transmitters were simulated to analyze the effects on the detection 

performance of the cooperative wideband spectrum sensing part of the proposed scheme.  

Comparison of the three-bit hard combination scheme and the traditional hard 

combination schemes were also presented.  Different values of number of samples, 

number of nodes, and standard deviation of the Gaussian variable in the shadowing 

model were simulated to analyze the effects on the performance of the localization part of 

the proposed scheme. 

B. SIGNIFICANT RESULTS 

The proposed sensor network based cooperative wideband spectrum sensing and 

localization scheme is appropriate for RF sensor networks since it senses a wide spectrum 
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band in an energy efficient manner by providing resilience to fading, shadowing, and 

noise.  Energy efficiency comes from the usage of MRSS and the proposed three-bit hard 

combination scheme.  In particular, redundant exhaustive sensing on empty bands is 

avoided with MRSS, and less overhead in collaboration with respect to the soft 

combination is provided by three-bit hard combination.  RSS-based localization provides 

the location and EIRP of the source of interest.  Resilience to fading, shadowing, and 

noise is due to the cooperation of the nodes.  

Results of the cooperative spectrum sensing part of the proposed scheme showed 

that using rectangular window in MRSS provides the highest detection margin.  The 

positions of the nodes participating in the sensing process and the applied decision 

criterion affect the detection performance. 

The proposed three-bit hard combination scheme is superior to the traditional hard 

combination schemes in false alarm reduction.  The detection performance of the three-

bit hard combination scheme can be improved with little additional cost by increasing the 

number of averaged PSDs. 

The simulation results of the localization part of the proposed scheme showed that 

average absolute power estimation error presents the same behavior as the position 

estimation error.  In particular, these two error metrics are affected in a similar manner by 

the number of samples, number of nodes, and standard deviation of the Gaussian variable 

in the shadowing model.  

C. FUTURE WORK 

There are several ideas for future work from this thesis.  First, simulation models 

can be improved.  Multipath fading effects could be added and their effects on the 

performance of the proposed scheme could be investigated.  Instead of generating the RF 

signals in MATLAB, actual transmitted signals could be collected in the field.  The 

proposed three-bit hard combination scheme could be compared with the two-bit hard 

combination scheme.  In the simulation results, probability of detection could be 

illustrated as a detection performance measure. 
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The three-bit hard combination scheme could be improved.  In weight 

determination, optimal values for the percentage of nodes required in a given region to 

declare the presence of the signal of interest could be determined using detection theory.  

Different weights for the energy observation regions, and different decision criteria could 

be studied and their effect on the performance of the proposed scheme could be analyzed.  

Thresholds could be determined to satisfy the target overall false alarm probability of the 

-nodeM network [6].   

For the localization part of the proposed scheme, RSS measurements and sensor 

node positions were assumed to be given.  This assumption is a drawback of the proposed 

scheme and the following ideas are offered for a future study.  RSS measurements could 

be implemented using a received signal strength indicator circuit.  Node positions could 

be determined using a range-free localization scheme.  
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APPENDIX 

The appendix contains selected MATLAB code used to evaluate the performance 

of the proposed sensor network based cooperative wideband spectrum sensing and 

localization scheme. 

A.  CODE USED TO STUDY THE EFFECT OF NUMBER OF NODES ON 
DETECTION PERCENTAGE OF THE COOPERATIVE WIDEBAND 
SPECTRUM SENSING PART OF THE PROPOSED SCHEME 

This code was used to generate the curve for SNR= 18 dB  in Figure 28. 

 
%Volkan Sonmezer, Sep 2009, Naval Postgraduate School, Monterey,CA, USA 
 
%This code is used to study the effect of number of nodes on detection 
performance of the cooperative wideband spectrum sensing part of the 
proposed scheme. 
  
clc 
clear all 
  
%%%%%%%%%%%%%%%%%%%       PARAMETERS FOR MRSS     %%%%%%%%%%%%%%%%%%%% 
fstart=31e6;      %We examine the spectrum between 31MHz and 130MHz 
fstop=130e6; 
  
fs=1e9;           %Sampling Frequency is 1GHz for all nodes 
ts=1/fs;  
  
fsweep_c=5e6;     %Sweeping frequency for central node 
Tw_c=0.1e-6;      %Window Length value for central node  
s_length_c=Tw_c; 
win_c=rectwin(Tw_c/ts);      %Rectangular window is applied 
t_int_c=(0:ts:Tw_c-ts)';     %Integral interval is Tw  
  
fsweep=2e6;        %Sweeping frequency for other nodes 
Tw=2e-6;           %Window Length value for other nodes 
s_length=Tw; 
win=rectwin(Tw/ts);      %Rectangular window is applied 
t_int=(0:ts:Tw-ts)';     %Integral interval is Tw   
  
%%%%%%%%%%   GENERATION OF 16QAM SIGNAL FOR CENTRAL NODE     %%%%%%%%%% 
fc3=95e6;                %Frequency of the 16-QAM  signal 
A = 16;                  %Alphabet size 
rand('state',0)          %To stabilize the power of the incoming signal 
x3_c = randint(s_length_c*fs,1,A);   %Random digital message 
opt_c=randint(s_length_c*fs,1,A); 
s3_0_c=modulate(x3_c,fc3,fs,'qam',opt_c); %QAM Modulation 
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%%%%%%%%%%   GENERATION OF 16QAM SIGNAL FOR OTHER NODES     %%%%%%%%%% 
fc3=95e6;                %Frequency of the 16-QAM  signal 
A = 16;                  %Alphabet size 
rand('state',0)          %To stabilize the power of the incoming signal 
x3 = randint(s_length*fs,1,A);   %Random digital message 
opt=randint(s_length*fs,1,A); 
s3_0=modulate(x3,fc3,fs,'qam',opt); %QAM Modulation 
  
%%%%%%%%%%%%%%%%%%%      VARIABLE PARAMETERS       %%%%%%%%%%%%%%%%%%%% 
N=10;       %Number of PSDs averaged  
N_c=N*1;    %Number of PSDs averaged for central nodes 
SNR=-18; %SNR in dB 
L=1000;     %Number of Simulation Runs 
PFA=0.1;    %Probability of False Alarm Value 
sigma=10; %Standard Deviation of the Gaussian Var. in Shadowing Model 
  
ss=0;    %Dummy variable 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
   %FINDING THE DETECTION PERCENTAGE FOR DIFFERENT NUMBER OF NODES  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
for M=5:1:20 
         
    %%% Preallocation of matrices to increase the calculation speed %%% 
    zI=zeros(N,ceil((fstop-fstart+1)/fsweep)); 
    zQ=zeros(N,ceil((fstop-fstart+1)/fsweep)); 
    nnI=zeros(N,ceil((fstop-fstart+1)/fsweep)); 
    nnQ=zeros(N,ceil((fstop-fstart+1)/fsweep)); 
    R=zeros(M,ceil((fstop-fstart+1)/fsweep)); 
    H1=zeros(1,ceil((fstop-fstart+1)/fsweep)); 
    zI_c=zeros(N_c,ceil((fstop-fstart+1)/fsweep_c)); 
    zQ_c=zeros(N_c,ceil((fstop-fstart+1)/fsweep_c)); 
    nnI_c=zeros(N_c,ceil((fstop-fstart+1)/fsweep_c)); 
    nnQ_c=zeros(N_c,ceil((fstop-fstart+1)/fsweep_c)); 
     
    ss=ss+1; 
     
    for Sim=1:L     %Beginning of L times run 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
             %THRESHOLD DETERMINATION BY CENTRAL NODE (Node 1) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
        %Adjusting the signal power values at the Central Node (Node 1) 
        s3_1_c=4.9728e-6*s3_0_c;   %Signal with power value=-92.02 dB 
  
        for m=1:N_c  %Calculating the PSD for every frequency N_c times 
  
            %Generating Shadowing effect for 16-QAM signal   
            xi=normrnd(0,sigma);             
            s3_2_c=10^(-xi/200)*s3_1_c; 
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            %Adding Channel Noise to provide given SNR 
            s_c=s3_2_c; 
            si_c= awgn(s3_2_c,SNR,'measured','dB');   
             
        %Adding the effect of LNA gain which is 40dB and thermal noise 
            Tnoise_c=wgn(s_length_c*fs,1,-88.98); 
            r_c=si_c*100+Tnoise_c; %Signal at the output of the LNA  
  
            %Calculation of the Total Noise 
            noise1_c =100*(si_c-s_c);       %AWGN Channel Noise   
            noise2_c=Tnoise_c;              %Thermal Noise 
            noise_c=noise1_c+noise2_c; 
  
            n=1;  %n is the index for frequency value 
             
            %Sweeping the spectrum  
  %(Look at analog correlation part of the MRSS diagram) 
            for fk=fstart:fsweep_c:fstop               
                wI_c=win_c.*cos(2*pi*fk*t_int_c);   
                yI_c=r_c.*wI_c;                    
                nI_c=noise_c.*wI_c;   
      zI_c(m,n)=(1/Tw_c)*trapz(t_int_c,yI_c);   
                nnI_c(m,n)=(1/Tw_c)*trapz(t_int_c,nI_c);     
                wQ_c=win_c.*sin(2*pi*fk*t_int_c); 
                yQ_c=r_c.*wQ_c; 
                nQ_c=noise_c.*wQ_c; 
                zQ_c(m,n)=(1/Tw_c)*trapz(t_int_c,yQ_c);   
                nnQ_c(m,n)=(1/Tw_c)*trapz(t_int_c,nQ_c); 
                n=n+1;   
            end 
        end 
  
      %Averaging the PSDs for signal plus noise input  
        zI_avg_c=sum(zI_c)/N_c; 
        zQ_avg_c=sum(zQ_c)/N_c; 
         
      %Averaging the PSDs for noise only input 
        nnI_avg_c=sum(nnI_c)/N_c; 
        nnQ_avg_c=sum(nnQ_c)/N_c; 
  
        %We find the statistics of the normal distribution that fits  
        %to the noise input of the envelope detector 
        [mu,sigma]=normfit(nnI_avg_c); 
         
        %Parameters of the Weibull distribution 
        a=sqrt(2)*sigma; 
        b=2; 
  
        %Numeric threshold values  
        T1_0=wblinv(1-PFA,a,b); 
        T2_0=wblinv(1-0.1*PFA,a,b); 
        T3_0=wblinv(1-1e-2*2*PFA,a,b); 
        T4_0=wblinv(1-1e-3*3*PFA,a,b); 
        T5_0=wblinv(1-1e-4*4*PFA,a,b); 
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        T6_0=wblinv(1-1e-5*5*PFA,a,b); 
        T7_0=wblinv(1-1e-6*6*PFA,a,b); 
  
        %Threshold values in dB 
        T1=10*log10(T1_0); 
        T2=10*log10(T2_0); 
        T3=10*log10(T3_0); 
        T4=10*log10(T4_0); 
        T5=10*log10(T5_0); 
        T6=10*log10(T6_0); 
        T7=10*log10(T7_0); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
        %APPLICATION OF COARSE RESOLUTION SENSING AT OTHER NODES 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
        for k=2:M       %There are 19 Nodes other than the central node   
  
            %Adjusting RSS values at every node  
            switch (k) 
                case 2 
                %16QAM Signal at Node 2 
                s3_1=4.984e-6*s3_0; %Signal with power value=-101.43dB 
                case 3 
                %16QAM Signal at Node 3 
                s3_1=6.0059e-6*s3_0; 
                case 4 
                %16QAM Signal at Node 4 
                s3_1=3.2142e-6*s3_0;              
                case 5 
                %16QAM Signal at Node 5 
                s3_1=3.3272e-6*s3_0;          
                case 6 
                %16QAM Signal at Node 6 
                s3_1=8.6712e-6*s3_0;             
                case 7 
                %16QAM Signal at Node 7 
                s3_1=4.8148e-6*s3_0; 
                case 8 
                %16QAM Signal at Node 8 
                s3_1=7.0889e-6*s3_0;             
                case 9 
                %16QAM Signal at Node 9 
                s3_1=3.4e-6*s3_0;      
                case 10 
                %16QAM Signal at Node 10 
                s3_1=4.7204e-6*s3_0;    
                case 11 
                %16QAM Signal at Node 11 
                s3_1=2.707565e-6*s3_0;    
                case 12 
                %16QAM Signal at Node 12 
                s3_1=4.8874e-6*s3_0;    
                case 13 
                %16QAM Signal at Node 13 



 83

                s3_1=4.014e-6*s3_0;    
                case 14 
                %16QAM Signal at Node 14 
                s3_1=3.1519e-6*s3_0;   
                case 15 
                %16QAM Signal at Node 15 
                s3_1=2.9415e-6*s3_0;    
                case 16 
                %16QAM Signal at Node 16 
                s3_1=4.94389e-6*s3_0;   
                case 17 
                %16QAM Signal at Node 17 
                s3_1=7.08058e-6*s3_0;    
                case 18 
                %16QAM Signal at Node 18 
                s3_1=3.4164e-6*s3_0;    
                case 19 
                %16QAM Signal at Node 19 
                s3_1=6.26713e-6*s3_0;    
                case 20 
                %16QAM Signal at Node 20 
                s3_1=10.54554e-6*s3_0;    
            end 
                         
            for m=1:N  %Calculating the PSD for every frequency N times 
 
                %Generating the shadowing effect for 16QAM signal   
                xi=normrnd(0,sigma);             
                s3_2=10^(-xi/200)*s3_1; 
                 
                %Adding channel noise to provide given SNR 
                s=s3_2; 
                si=awgn(s3_2,SNR,'measured','dB');   
                 
         %Adding the effect of LNA gain which is 40dB and thermal noise 
                Tnoise=wgn(s_length*fs,1,-101.99); 
                r=si*100+Tnoise; %Signal at the output of the LNA  
  
                n=1;   %n is the index for frequency value 
  
                %Sweeping the spectrum 
      %(Look at the analog correlation part of the MRSS) 
                for fk=fstart:fsweep:fstop               
                    wI=win.*cos(2*pi*fk*t_int);   
                    yI=r.*wI;                    
                    zI(m,n)=(1/Tw)*trapz(t_int,yI);      
                    wQ=win.*sin(2*pi*fk*t_int); 
                    yQ=r.*wQ; 
                    zQ(m,n)=(1/Tw)*trapz(t_int,yQ);   
                    n=n+1;   
                end 
            end 
       
  %Averaging the PSDs for signal plus noise input 
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            zI_avg=sum(zI)/N; 
            zQ_avg=sum(zQ)/N; 
  
            %The spectral density for signal plus noise input 
            p=sqrt((zI_avg.^2)+(zQ_avg.^2));         
            p1=10*log10(p); 
%Comparing sensed energies with thresholds and determining 3-bit values 
            n=1; 
            for fk=fstart:fsweep:fstop 
                if p1(n)>=T7 
                    R(k,n)=7; 
                elseif p1(n)>=T6 
                    R(k,n)=6; 
                elseif p1(n)>=T5 
                    R(k,n)=5; 
                elseif p1(n)>=T4 
                    R(k,n)=4; 
                elseif p1(n)>=T3 
                    R(k,n)=3; 
                elseif p1(n)>=T2 
                    R(k,n)=2; 
                elseif p1(n)>=T1 
                    R(k,n)=1; 
                else 
                    R(k,n)=0; 
                end 
                n=n+1; 
 %Note: R matrix holds the three-bit results in decimal for each node 
            end 
        end 
         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
                      %THREE-BIT HARD COMBINATION 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
         

  n=1; 
        %Examining every frequency value 
   for fk=fstart:fsweep:fstop 
            N7=0; 
            N6=0; 
            N5=0; 
            N4=0; 
            N3=0; 
            N2=0; 
            N1=0; 
  
            %Finding the number of observed energies in every region 
            for k=2:M 
                switch (R(k,n)) 
                    case 7 
                        N7=N7+1;    %N7 observed energies at region 7 
                    case 6 
                        N6=N6+1; 
                    case 5 
                        N5=N5+1; 
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                    case 4 
                        N4=N4+1; 
                    case 3 
                        N3=N3+1; 
                    case 2 
                        N2=N2+1; 
                    case 1 
                        N1=N1+1; 
                end 
            end 
             
            %Decision criterion  
            Sum=(M-1)*N7+20*N6+5*N5+2.5*N4+1.667*N3+1.25*N2+1*N1; 
  
            %Finding the number of detections at every frequency value 
            if Sum>=M-1 
                H1(n)=H1(n)+1;  %H1 hypothesis=Signal is present 
            end 
            n=n+1; 
        end 
         
    end %End of 1000 times simulation run 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

 %CALCULATION OF THE DETECTION PERCENTAGE  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%Below code have to be changed if sweeped frequency range or 
%transmitter frequency is changed! 
     Det_Perc(ss)=100*H1(33)/L;%95 MHz forms a peak at the 33rd element 
  
end 

B.  CODE USED TO STUDY THE EFFECT OF NUMBER OF SAMPLES ON 
RSS-BASED LOCALIZATION 

This code was used to generate the curve for five nodes in Figure 34. 

%Volkan Sonmezer, Sep 2009, Naval Postgraduate School, Monterey,CA,USA 
 
%This code is used to study the effect of number of samples on position 
%estimation MSE of the localization part of the proposed scheme. 
 
%All coordinates are in meter 
  
clc 
clear all 
%Coordinates of the Transmitter_3 
xtx3=1500; 
ytx3=1100; 
%EIRP of Transmitter 3 in Watts 
Ptx3=1;    
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%Coordinates of the nodes 
x=[700 900 1000 300 200 1100 500 800 100 400 100 800 500 200 50  600 
900 150 700 1000]; 
y=[250 100 200  100 300 400  450 500 550 600 50  150 200 200 300 350 
400 450 500 600]; 
 
%Ideal RSS values at each node 
I_RSS=[-92.02 -92 -90.38 -95.81 -95.51 -87.19 -92.3 -88.94 -95.32 -
92.47 -97.29 -92.16 -93.87 -95.97 -96.57 -92.06 -88.94 -95.27 -90 -
85.48]; 
  
%K is the coefficient representing the factors such as antenna gain and 
%height that affects the RSS 
%For each node, K values are equal to 1 
K=1;          
 
L=10000;     %Number of simulation runs for MSE calculation 
sigma=3;  %Standard dev. of the Gaussian var. in the shadowing model 
alfa=3;   %Path loss exponent 
M=5;         %Number of Nodes 
ss=1; 
 
for N=100:100:1000     %Number of Samples 
    for Sim=1:L         %Beginning of L simulation runs  
        for k=1:M            
            for m=1:N  
                xi=normrnd(0,sigma);                   
                RSS3_0(m,k)=I_RSS(k)-0.1*xi;%Including Shadowing effect 
            end 

%Numerical RSS value due to TX3 at Node k 
RSS3(k)=10^((sum(RSS3_0(:,k))/N)/10);            
A3(k,:)=[2*x(k) 2*y(k) (K/RSS3(k))^(2/alfa) -1]; 

            b(k,:)=[x(k)^2+y(k)^2]; 
        end 
 

  %Teta3 vector gives [xtx3 ytx3 Ptx3^(2/alfa) xtx3^2+ytx3^2] 
        Teta3=pinv(A3)*b;  
        %Teta3=mldivide(A3,b); 
  
        %Position Estimation Error for TX3  
        E3(Sim)=sqrt((xtx3-Teta3(1))^2+(ytx3-Teta3(2))^2); 
  
        %Absolute of transmitter EIRP estimation error for TX3 
        PE3(Sim)=abs(Ptx3-Teta3(3)^(alfa/2)); 
    end     %End of 10000 times simulation 
  
    %Mean Square Error for TX3  
    MSE3(ss)=sum(E3')/L; 
    %Average Absolute Power Estimation Error for TX3 
    APEE3(ss)=sum(PE3')/L; 
    ss=ss+1; 
end  
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